← Back to Leaderboard

The AI CUDA Engineer 👷

46_NetVladWithGhostClustersshared_memory_netvlad_optimized_base

Level 3 • Task 46
import math
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch as th


def module_fn(
    x: torch.Tensor,
    clusters: torch.Tensor,
    clusters2: torch.Tensor,
    bn_weight: torch.Tensor,
    bn_bias: torch.Tensor,
    bn_mean: torch.Tensor,
    bn_var: torch.Tensor,
    is_training: bool,
    cluster_size: int,
    feature_size: int,
) -> torch.Tensor:
    """
    Functional version of the NetVLAD with ghost clusters

    Args:
        x: Input tensor of shape (batch_size, num_features, feature_size)
        clusters: Weight tensor for cluster assignments
        clusters2: Weight tensor for visual words
        bn_weight: BatchNorm weight
        bn_bias: BatchNorm bias
        bn_mean: BatchNorm running mean
        bn_var: BatchNorm running var
        is_training: Whether in training mode
        cluster_size: Number of clusters (K)
        feature_size: Feature dimension (D)

    Returns:
        Output tensor of shape (batch_size, cluster_size * feature_size)
    """
    max_sample = x.size()[1]
    x = x.view(-1, feature_size)  # B x N x D -> BN x D

    if x.device != clusters.device:
        msg = f"x.device {x.device} != cluster.device {clusters.device}"
        raise ValueError(msg)

    assignment = th.matmul(x, clusters)  # (BN x D) x (D x (K+G)) -> BN x (K+G)
    assignment = F.batch_norm(
        assignment, bn_mean, bn_var, bn_weight, bn_bias, is_training
    )

    assignment = F.softmax(assignment, dim=1)  # BN x (K+G) -> BN x (K+G)
    # remove ghost assigments
    assignment = assignment[:, :cluster_size]
    assignment = assignment.view(-1, max_sample, cluster_size)  # -> B x N x K
    a_sum = th.sum(assignment, dim=1, keepdim=True)  # B x N x K -> B x 1 x K
    a = a_sum * clusters2

    assignment = assignment.transpose(1, 2)  # B x N x K -> B x K x N

    x = x.view(-1, max_sample, feature_size)  # BN x D -> B x N x D
    vlad = th.matmul(assignment, x)  # (B x K x N) x (B x N x D) -> B x K x D
    vlad = vlad.transpose(1, 2)  # -> B x D x K
    vlad = vlad - a

    # L2 intra norm
    vlad = F.normalize(vlad)

    # flattening + L2 norm
    vlad = vlad.reshape(-1, cluster_size * feature_size)  # -> B x DK
    vlad = F.normalize(vlad)
    return vlad  # B x DK


class Model(nn.Module):
    def __init__(self, cluster_size, feature_size, ghost_clusters):
        super(Model, self).__init__()

        self.feature_size = feature_size
        self.cluster_size = cluster_size
        self.ghost_clusters = ghost_clusters

        init_sc = 1 / math.sqrt(feature_size)
        clusters = cluster_size + ghost_clusters

        # The `clusters` weights are the `(w,b)` in the paper
        self.clusters = nn.Parameter(init_sc * th.randn(feature_size, clusters))

        # Extract batchnorm parameters
        bn = nn.BatchNorm1d(clusters)
        self.bn_weight = nn.Parameter(bn.weight.data.clone())
        self.bn_bias = nn.Parameter(bn.bias.data.clone())
        self.bn_mean = nn.Parameter(bn.running_mean.data.clone())
        self.bn_var = nn.Parameter(bn.running_var.data.clone())

        # The `clusters2` weights are the visual words `c_k` in the paper
        self.clusters2 = nn.Parameter(init_sc * th.randn(1, feature_size, cluster_size))
        self.out_dim = self.cluster_size * feature_size

    def forward(self, x, fn=module_fn):
        return fn(
            x,
            self.clusters,
            self.clusters2,
            self.bn_weight,
            self.bn_bias,
            self.bn_mean,
            self.bn_var,
            self.training,
            self.cluster_size,
            self.feature_size,
        )


batch_size = 32
num_features = 100
num_clusters = 32
feature_size = 512
ghost_clusters = 16


def get_inputs():
    return [torch.randn(batch_size, num_features, feature_size)]


def get_init_inputs():
    return [num_clusters, feature_size, ghost_clusters]
# Copyright 2018 Antoine Miech All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#      http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS-IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

"""
Code modified from here
https://github.com/albanie/collaborative-experts/blob/master/model/net_vlad.py
"""


import math
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch as th


class Model(nn.Module):
    def __init__(self, cluster_size, feature_size, ghost_clusters):
        super(Model, self).__init__()

        self.feature_size = feature_size
        self.cluster_size = cluster_size
        self.ghost_clusters = ghost_clusters

        init_sc = (1 / math.sqrt(feature_size))
        clusters = cluster_size + ghost_clusters

        # The `clusters` weights are the `(w,b)` in the paper
        self.clusters = nn.Parameter(init_sc * th.randn(feature_size, clusters))
        self.batch_norm = nn.BatchNorm1d(clusters)
        # The `clusters2` weights are the visual words `c_k` in the paper
        self.clusters2 = nn.Parameter(init_sc * th.randn(1, feature_size, cluster_size))
        self.out_dim = self.cluster_size * feature_size

    def forward(self, x, mask=None):
        """Aggregates feature maps into a fixed size representation.  In the following
        notation, B = batch_size, N = num_features, K = num_clusters, D = feature_size.

        Args:
            x (th.Tensor): B x N x D

        Returns:
            (th.Tensor): B x DK
        """
        max_sample = x.size()[1]
        x = x.view(-1, self.feature_size)  # B x N x D -> BN x D

        if x.device != self.clusters.device:
            msg = f"x.device {x.device} != cluster.device {self.clusters.device}"
            raise ValueError(msg)

        assignment = th.matmul(x, self.clusters)  # (BN x D) x (D x (K+G)) -> BN x (K+G)
        assignment = self.batch_norm(assignment)

        assignment = F.softmax(assignment, dim=1)  # BN x (K+G) -> BN x (K+G)
        # remove ghost assigments
        assignment = assignment[:, :self.cluster_size]
        assignment = assignment.view(-1, max_sample, self.cluster_size)  # -> B x N x K
        a_sum = th.sum(assignment, dim=1, keepdim=True)  # B x N x K -> B x 1 x K
        a = a_sum * self.clusters2

        assignment = assignment.transpose(1, 2)  # B x N x K -> B x K x N

        x = x.view(-1, max_sample, self.feature_size)  # BN x D -> B x N x D
        vlad = th.matmul(assignment, x)  # (B x K x N) x (B x N x D) -> B x K x D
        vlad = vlad.transpose(1, 2)  # -> B x D x K
        vlad = vlad - a

        # L2 intra norm
        vlad = F.normalize(vlad)

        # flattening + L2 norm
        vlad = vlad.reshape(-1, self.cluster_size * self.feature_size)  # -> B x DK
        vlad = F.normalize(vlad)
        return vlad  # B x DK

batch_size = 32
num_features = 100
num_clusters = 32
feature_size = 512
ghost_clusters = 16

def get_inputs():
  return [torch.randn(batch_size, num_features, feature_size)]

def get_init_inputs():
  return [num_clusters, feature_size, ghost_clusters]

Kernel Information

Related Kernels (Level 3, Task 46 • 46_NetVladWithGhostClusters)

Rank Kernel Name Runtime (ms) Speedup Native Speedup Compile
🥇 modular_netvlad_ghost_base 0.10 1.99 0.78
🥇 warp_reduction_netvlad_base 0.10 1.99 0.78
🥇 netvlad_warp_shfl_sync_optimized_base 0.10 1.99 0.78
4 sync_optimized_netvlad_base_base 0.10 1.97 0.77
4 warp_reduction_netvlad_optimized_base 0.10 1.97 0.77
4 shared_memory_netvlad_v2_base 0.10 1.97 0.77
4 netvlad_modular_device_funcs_base 0.10 1.97 0.77
4 netvlad_warp_shfl_optimized_edit_1 0.10 1.97 0.77
4 netvlad_warp_atomic_optimized_edit_1 0.10 1.97 0.77
10 netvlad_warp_shfl_optimized_base 0.10 1.95 0.76
10 netvlad_block_size_optimized_base 0.10 1.95 0.76
10 46_NetVladWithGhostClusters 0.10 1.95 0.76
13 46_netvlad_reduced_sync_base 0.10 1.93 0.75
13 shared_memory_netvlad_optimized_base 0.10 1.93 0.75
13 optimized_netvlad_cuda_edit_1 0.10 1.93 0.75
13 46_netvlad_reduced_sync_edit_1 0.10 1.93 0.75
13 shared_memory_netvlad_optimized_base 0.10 1.93 0.75
13 netvlad_block_size_optimized_edit_1 0.10 1.93 0.75
13 netvlad_warp_atomic_optimized_base 0.10 1.93 0.75
13 netvlad_modular_device_funcs_edit_1 0.10 1.93 0.75
#include <torch/extension.h>
#include <ATen/ATen.h>
#include <cuda.h>
#include <cuda_runtime.h>
#include <vector>

// Kernel function that utilizes shared memory for frequently reused data
__global__ void shared_memory_assignment_kernel(
    const float* __restrict__ x,             // [B*N, D]
    const float* __restrict__ clusters,        // [D, K]
    const float* __restrict__ bn_weight,       // [K]
    const float* __restrict__ bn_bias,         // [K]
    const float* __restrict__ bn_mean,         // [K]
    const float* __restrict__ bn_var,          // [K]
    float* __restrict__ assignment,            // [B*N, K]
    int D, int K, float eps) {
    // Shared memory for cluster data
    extern __shared__ float s_clusters[];

    // Load clusters into shared memory
    for (int i = threadIdx.x; i < D * K; i += blockDim.x) {
        s_clusters[i] = clusters[i];
    }
    __syncthreads();

    int row = blockIdx.x;
    int tid = threadIdx.x;

    // Each thread computes over a subset of cluster channels
    for (int j = tid; j < K; j += blockDim.x) {
        float dot = 0.0f;
        for (int i = 0; i < D; i++) {
            dot += x[row * D + i] * s_clusters[i * K + j];
        }
        float bn_val = bn_weight[j] * ((dot - bn_mean[j]) / sqrtf(bn_var[j] + eps)) + bn_bias[j];
        assignment[row * K + j] = bn_val;
    }
}

// Forward function for NetVLAD using shared memory optimization
// This function combines matmul, batch norm, and softmax calculations and optimizes them
// using shared memory to reduce global memory latency.
torch::Tensor forward(
    torch::Tensor x,
    torch::Tensor clusters,
    torch::Tensor clusters2,
    torch::Tensor bn_weight,
    torch::Tensor bn_bias,
    torch::Tensor bn_mean,
    torch::Tensor bn_var,
    bool is_training,
    int64_t cluster_size,
    int64_t feature_size
) {
    // Dimensions extraction
    auto B = x.size(0);
    auto N = x.size(1);
    auto D = x.size(2);

    // Flatten input
    x = x.reshape({B * N, D});

    // Initialize assignment tensor
    auto options = x.options();
    torch::Tensor assignment = torch::empty({B * N, clusters.size(1)}, options);

    if (!is_training) {
        int threads = 256;
        int blocks = B * N;
        size_t shared_mem = D * clusters.size(1) * sizeof(float);

        shared_memory_assignment_kernel<<<blocks, threads, shared_mem>>>(
            x.data_ptr<float>(),
            clusters.data_ptr<float>(),
            bn_weight.data_ptr<float>(),
            bn_bias.data_ptr<float>(),
            bn_mean.data_ptr<float>(),
            bn_var.data_ptr<float>(),
            assignment.data_ptr<float>(),
            D, clusters.size(1), 1e-5f
        );
        cudaDeviceSynchronize();
    } else {
        // Fallback to standard ATen operations for training
        assignment = at::matmul(x, clusters);
        assignment = at::batch_norm(
            assignment, bn_weight, bn_bias, bn_mean, bn_var,
            is_training, 0.1, 1e-5, true
        );
        assignment = at::softmax(assignment, 1);
    }

    // Continue with NetVLAD aggregation
    assignment = assignment.narrow(1, 0, cluster_size).reshape({B, N, cluster_size});

    auto a_sum = assignment.sum(1, true);
    auto a = a_sum * clusters2;

    assignment = assignment.transpose(1, 2);
    x = x.reshape({B, N, D});

    auto vlad = at::bmm(assignment, x).transpose(1, 2) - a;
    vlad = vlad / (vlad.norm(2, {1}, true) + 1e-12);
    vlad = vlad.reshape({B, D * cluster_size});
    return vlad / (vlad.norm(2, {1}, true) + 1e-12);
}

PYBIND11_MODULE(TORCH_EXTENSION_NAME, m) {
    m.def("forward", &forward, "Optimized NetVLAD with shared memory (CUDA)");
}
Performance Metrics
Metric Value Unit Variance Samples
Analysis Rules
Rule Description
Operation / Metric Value Unit
aten::empty_strided
CPU Time 457836.86 μs
Device Time 0.00 μs
Self CPU Time 38388.96 μs
Self Device Time 0.00 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
aten::zero_
CPU Time 258130.86 μs
Device Time 1247407.26 μs
Self CPU Time 52871.27 μs
Self Device Time 0.00 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
aten::fill_
CPU Time 205278.11 μs
Device Time 1247407.26 μs
Self CPU Time 73683.22 μs
Self Device Time 1247407.26 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
aten::batch_norm
CPU Time 866886.90 μs
Device Time 275883.55 μs
Self CPU Time 28184.14 μs
Self Device Time 0.00 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
aten::_batch_norm_impl_index
CPU Time 838702.76 μs
Device Time 275883.55 μs
Self CPU Time 39080.27 μs
Self Device Time 0.00 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
aten::native_batch_norm
CPU Time 769039.03 μs
Device Time 275883.55 μs
Self CPU Time 210874.63 μs
Self Device Time 238190.21 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
cudaLaunchKernel
CPU Time 1136312.56 μs
Device Time 0.00 μs
Self CPU Time 1136312.56 μs
Self Device Time 0.00 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
void at::native::vectorized_elementwise_kernel<4, at::native::FillFunctor<int>, at::detail::Array<char*, 1> >(int, at::native::FillFunctor<int>, at::detail::Array<char*, 1>)
CPU Time 0.00 μs
Device Time 1247407.26 μs
Self CPU Time 0.00 μs
Self Device Time 1247407.26 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
Status: Completed
45297 warnings generated when compiling for host.
Suppressed 45330 warnings (45283 in non-user code, 47 NOLINT).
Use -header-filter=.* to display errors from all non-system headers. Use -system-headers to display errors from system headers as well.
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_3/task_46/b10_s1_shared_memory_netvlad_optimized/base/base.cu:9:5 bugprone-easily-swappable-parameters
9 | const float* __restrict__ x, // [B*N, D]
| ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
10 | const float* __restrict__ clusters, // [D, K]
| ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
11 | const float* __restrict__ bn_weight, // [K]
| ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_3/task_46/b10_s1_shared_memory_netvlad_optimized/base/base.cu:9:31: note: the first parameter in the range is 'x'
9 | const float* __restrict__ x, // [B*N, D]
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_3/task_46/b10_s1_shared_memory_netvlad_optimized/base/base.cu:11:31: note: the last parameter in the range is 'bn_weight'
11 | const float* __restrict__ bn_weight, // [K]
| ^~~~~~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_3/task_46/b10_s1_shared_memory_netvlad_optimized/base/base.cu:16:12: warning: 2 adjacent parameters of 'shared_memory_assignment_kernel' of convertible types are easily swapped by mistake [bugprone-easily-swappable-parameters]
16 | int D, int K, float eps) {
| ^~~~~~~~~~~~~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_3/task_46/b10_s1_shared_memory_netvlad_optimized/base/base.cu:16:16: note: the first parameter in the range is 'K'
16 | int D, int K, float eps) {
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_3/task_46/b10_s1_shared_memory_netvlad_optimized/base/base.cu:16:25: note: the last parameter in the range is 'eps'
16 | int D, int K, float eps) {
| ^~~
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_3/task_46/b10_s1_shared_memory_netvlad_optimized/base/base.cu:16:19: note: 'int' and 'float' may be implicitly converted
16 | int D, int K, float eps) {
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_3/task_46/b10_s1_shared_memory_netvlad_optimized/base/base.cu:21:18: warning: narrowing conversion from 'unsigned int' to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
21 | for (int i = threadIdx.x; i < D * K; i += blockDim.x) {
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_3/task_46/b10_s1_shared_memory_netvlad_optimized/base/base.cu:21:47: warning: narrowing conversion from 'unsigned int' to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
21 | for (int i = threadIdx.x; i < D * K; i += blockDim.x) {
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_3/task_46/b10_s1_shared_memory_netvlad_optimized/base/base.cu:26:15: warning: narrowing conversion from 'unsigned int' to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
26 | int row = blockIdx.x;
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_3/task_46/b10_s1_shared_memory_netvlad_optimized/base/base.cu:27:15: warning: narrowing conversion from 'unsigned int' to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
27 | int tid = threadIdx.x;
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_3/task_46/b10_s1_shared_memory_netvlad_optimized/base/base.cu:30:35: warning: narrowing conversion from 'unsigned int' to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
30 | for (int j = tid; j < K; j += blockDim.x) {
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_3/task_46/b10_s1_shared_memory_netvlad_optimized/base/base.cu:45:19: warning: the parameter 'clusters' is copied for each invocation but only used as a const reference; consider making it a const reference [performance-unnecessary-value-param]
45 | torch::Tensor clusters,
| ^
| const &
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_3/task_46/b10_s1_shared_memory_netvlad_optimized/base/base.cu:46:5: warning: 2 adjacent parameters of 'forward' of similar type ('torch::Tensor') are easily swapped by mistake [bugprone-easily-swappable-parameters]
46 | torch::Tensor clusters2,
| ^~~~~~~~~~~~~~~~~~~~~~~~
47 | torch::Tensor bn_weight,
| ~~~~~~~~~~~~~~~~~~~~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_3/task_46/b10_s1_shared_memory_netvlad_optimized/base/base.cu:46:19: note: the first parameter in the range is 'clusters2'
46 | torch::Tensor clusters2,
| ^~~~~~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_3/task_46/b10_s1_shared_memory_netvlad_optimized/base/base.cu:47:19: note: the last parameter in the range is 'bn_weight'
47 | torch::Tensor bn_weight,
| ^~~~~~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_3/task_46/b10_s1_shared_memory_netvlad_optimized/base/base.cu:46:19: warning: the parameter 'clusters2' is copied for each invocation but only used as a const reference; consider making it a const reference [performance-unnecessary-value-param]
46 | torch::Tensor clusters2,
| ^
| const &
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_3/task_46/b10_s1_shared_memory_netvlad_optimized/base/base.cu:52:5: warning: 2 adjacent parameters of 'forward' of similar type ('int64_t') are easily swapped by mistake [bugprone-easily-swappable-parameters]
52 | int64_t cluster_size,
| ^~~~~~~~~~~~~~~~~~~~~
53 | int64_t feature_size
| ~~~~~~~~~~~~~~~~~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_3/task_46/b10_s1_shared_memory_netvlad_optimized/base/base.cu:52:13: note: the first parameter in the range is 'cluster_size'
52 | int64_t cluster_size,
| ^~~~~~~~~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_3/task_46/b10_s1_shared_memory_netvlad_optimized/base/base.cu:53:13: note: the last parameter in the range is 'feature_size'
53 | int64_t feature_size
| ^~~~~~~~~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_3/task_46/b10_s1_shared_memory_netvlad_optimized/base/base.cu:69:22: warning: narrowing conversion from 'int64_t' (aka 'long') to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
69 | int blocks = B * N;
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_3/task_46/b10_s1_shared_memory_netvlad_optimized/base/base.cu:80:13: warning: narrowing conversion from 'int64_t' (aka 'long') to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
80 | D, clusters.size(1), 1e-5f
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_3/task_46/b10_s1_shared_memory_netvlad_optimized/base/base.cu:80:16: warning: narrowing conversion from 'int64_t' (aka 'long') to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
80 | D, clusters.size(1), 1e-5f
| ^