← Back to Leaderboard

The AI CUDA Engineer 👷

46_NetVladWithGhostClustersnetvlad_modular_device_funcs_base

Level 3 • Task 46
import math
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch as th


def module_fn(
    x: torch.Tensor,
    clusters: torch.Tensor,
    clusters2: torch.Tensor,
    bn_weight: torch.Tensor,
    bn_bias: torch.Tensor,
    bn_mean: torch.Tensor,
    bn_var: torch.Tensor,
    is_training: bool,
    cluster_size: int,
    feature_size: int,
) -> torch.Tensor:
    """
    Functional version of the NetVLAD with ghost clusters

    Args:
        x: Input tensor of shape (batch_size, num_features, feature_size)
        clusters: Weight tensor for cluster assignments
        clusters2: Weight tensor for visual words
        bn_weight: BatchNorm weight
        bn_bias: BatchNorm bias
        bn_mean: BatchNorm running mean
        bn_var: BatchNorm running var
        is_training: Whether in training mode
        cluster_size: Number of clusters (K)
        feature_size: Feature dimension (D)

    Returns:
        Output tensor of shape (batch_size, cluster_size * feature_size)
    """
    max_sample = x.size()[1]
    x = x.view(-1, feature_size)  # B x N x D -> BN x D

    if x.device != clusters.device:
        msg = f"x.device {x.device} != cluster.device {clusters.device}"
        raise ValueError(msg)

    assignment = th.matmul(x, clusters)  # (BN x D) x (D x (K+G)) -> BN x (K+G)
    assignment = F.batch_norm(
        assignment, bn_mean, bn_var, bn_weight, bn_bias, is_training
    )

    assignment = F.softmax(assignment, dim=1)  # BN x (K+G) -> BN x (K+G)
    # remove ghost assigments
    assignment = assignment[:, :cluster_size]
    assignment = assignment.view(-1, max_sample, cluster_size)  # -> B x N x K
    a_sum = th.sum(assignment, dim=1, keepdim=True)  # B x N x K -> B x 1 x K
    a = a_sum * clusters2

    assignment = assignment.transpose(1, 2)  # B x N x K -> B x K x N

    x = x.view(-1, max_sample, feature_size)  # BN x D -> B x N x D
    vlad = th.matmul(assignment, x)  # (B x K x N) x (B x N x D) -> B x K x D
    vlad = vlad.transpose(1, 2)  # -> B x D x K
    vlad = vlad - a

    # L2 intra norm
    vlad = F.normalize(vlad)

    # flattening + L2 norm
    vlad = vlad.reshape(-1, cluster_size * feature_size)  # -> B x DK
    vlad = F.normalize(vlad)
    return vlad  # B x DK


class Model(nn.Module):
    def __init__(self, cluster_size, feature_size, ghost_clusters):
        super(Model, self).__init__()

        self.feature_size = feature_size
        self.cluster_size = cluster_size
        self.ghost_clusters = ghost_clusters

        init_sc = 1 / math.sqrt(feature_size)
        clusters = cluster_size + ghost_clusters

        # The `clusters` weights are the `(w,b)` in the paper
        self.clusters = nn.Parameter(init_sc * th.randn(feature_size, clusters))

        # Extract batchnorm parameters
        bn = nn.BatchNorm1d(clusters)
        self.bn_weight = nn.Parameter(bn.weight.data.clone())
        self.bn_bias = nn.Parameter(bn.bias.data.clone())
        self.bn_mean = nn.Parameter(bn.running_mean.data.clone())
        self.bn_var = nn.Parameter(bn.running_var.data.clone())

        # The `clusters2` weights are the visual words `c_k` in the paper
        self.clusters2 = nn.Parameter(init_sc * th.randn(1, feature_size, cluster_size))
        self.out_dim = self.cluster_size * feature_size

    def forward(self, x, fn=module_fn):
        return fn(
            x,
            self.clusters,
            self.clusters2,
            self.bn_weight,
            self.bn_bias,
            self.bn_mean,
            self.bn_var,
            self.training,
            self.cluster_size,
            self.feature_size,
        )


batch_size = 32
num_features = 100
num_clusters = 32
feature_size = 512
ghost_clusters = 16


def get_inputs():
    return [torch.randn(batch_size, num_features, feature_size)]


def get_init_inputs():
    return [num_clusters, feature_size, ghost_clusters]
# Copyright 2018 Antoine Miech All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#      http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS-IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

"""
Code modified from here
https://github.com/albanie/collaborative-experts/blob/master/model/net_vlad.py
"""


import math
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch as th


class Model(nn.Module):
    def __init__(self, cluster_size, feature_size, ghost_clusters):
        super(Model, self).__init__()

        self.feature_size = feature_size
        self.cluster_size = cluster_size
        self.ghost_clusters = ghost_clusters

        init_sc = (1 / math.sqrt(feature_size))
        clusters = cluster_size + ghost_clusters

        # The `clusters` weights are the `(w,b)` in the paper
        self.clusters = nn.Parameter(init_sc * th.randn(feature_size, clusters))
        self.batch_norm = nn.BatchNorm1d(clusters)
        # The `clusters2` weights are the visual words `c_k` in the paper
        self.clusters2 = nn.Parameter(init_sc * th.randn(1, feature_size, cluster_size))
        self.out_dim = self.cluster_size * feature_size

    def forward(self, x, mask=None):
        """Aggregates feature maps into a fixed size representation.  In the following
        notation, B = batch_size, N = num_features, K = num_clusters, D = feature_size.

        Args:
            x (th.Tensor): B x N x D

        Returns:
            (th.Tensor): B x DK
        """
        max_sample = x.size()[1]
        x = x.view(-1, self.feature_size)  # B x N x D -> BN x D

        if x.device != self.clusters.device:
            msg = f"x.device {x.device} != cluster.device {self.clusters.device}"
            raise ValueError(msg)

        assignment = th.matmul(x, self.clusters)  # (BN x D) x (D x (K+G)) -> BN x (K+G)
        assignment = self.batch_norm(assignment)

        assignment = F.softmax(assignment, dim=1)  # BN x (K+G) -> BN x (K+G)
        # remove ghost assigments
        assignment = assignment[:, :self.cluster_size]
        assignment = assignment.view(-1, max_sample, self.cluster_size)  # -> B x N x K
        a_sum = th.sum(assignment, dim=1, keepdim=True)  # B x N x K -> B x 1 x K
        a = a_sum * self.clusters2

        assignment = assignment.transpose(1, 2)  # B x N x K -> B x K x N

        x = x.view(-1, max_sample, self.feature_size)  # BN x D -> B x N x D
        vlad = th.matmul(assignment, x)  # (B x K x N) x (B x N x D) -> B x K x D
        vlad = vlad.transpose(1, 2)  # -> B x D x K
        vlad = vlad - a

        # L2 intra norm
        vlad = F.normalize(vlad)

        # flattening + L2 norm
        vlad = vlad.reshape(-1, self.cluster_size * self.feature_size)  # -> B x DK
        vlad = F.normalize(vlad)
        return vlad  # B x DK

batch_size = 32
num_features = 100
num_clusters = 32
feature_size = 512
ghost_clusters = 16

def get_inputs():
  return [torch.randn(batch_size, num_features, feature_size)]

def get_init_inputs():
  return [num_clusters, feature_size, ghost_clusters]

Kernel Information

Related Kernels (Level 3, Task 46 • 46_NetVladWithGhostClusters)

Rank Kernel Name Runtime (ms) Speedup Native Speedup Compile
🥇 modular_netvlad_ghost_base 0.10 1.99 0.78
🥇 warp_reduction_netvlad_base 0.10 1.99 0.78
🥇 netvlad_warp_shfl_sync_optimized_base 0.10 1.99 0.78
4 sync_optimized_netvlad_base_base 0.10 1.97 0.77
4 warp_reduction_netvlad_optimized_base 0.10 1.97 0.77
4 shared_memory_netvlad_v2_base 0.10 1.97 0.77
4 netvlad_modular_device_funcs_base 0.10 1.97 0.77
4 netvlad_warp_shfl_optimized_edit_1 0.10 1.97 0.77
4 netvlad_warp_atomic_optimized_edit_1 0.10 1.97 0.77
10 netvlad_warp_shfl_optimized_base 0.10 1.95 0.76
10 netvlad_block_size_optimized_base 0.10 1.95 0.76
10 46_NetVladWithGhostClusters 0.10 1.95 0.76
13 46_netvlad_reduced_sync_base 0.10 1.93 0.75
13 shared_memory_netvlad_optimized_base 0.10 1.93 0.75
13 optimized_netvlad_cuda_edit_1 0.10 1.93 0.75
13 46_netvlad_reduced_sync_edit_1 0.10 1.93 0.75
13 shared_memory_netvlad_optimized_base 0.10 1.93 0.75
13 netvlad_block_size_optimized_edit_1 0.10 1.93 0.75
13 netvlad_warp_atomic_optimized_base 0.10 1.93 0.75
13 netvlad_modular_device_funcs_edit_1 0.10 1.93 0.75
#include <torch/extension.h>
#include <ATen/ATen.h>
#include <cuda_runtime.h>

// Maximum number of floats that can be stored in constant memory (16384 floats ~ 64KB)
#define MAX_CLUSTERS_SIZE 16384

// Declare constant memory for the clusters tensor (expected shape [D, K+G])
__constant__ float d_clusters[MAX_CLUSTERS_SIZE];

// Modular device function for warp-level reduction
__device__ float warpReduceSum(float val) {
    // Use full warp mask
    for (int offset = warpSize / 2; offset > 0; offset /= 2) {
        val += __shfl_down_sync(0xFFFFFFFF, val, offset);
    }
    return val;
}

// Modular device function to compute partial dot product for one row and one column
// Each thread in a warp computes a partial sum over elements of D using a stride of warpSize
__device__ float dotProduct(const float* __restrict__ x, int row, int D, int N_out, int col, int lane) {
    float sum = 0.0f;
    for (int k = lane; k < D; k += warpSize) {
        // Access clusters from constant memory; assumed layout: [D, N_out] (column-major for clusters)
        sum += x[row * D + k] * d_clusters[k * N_out + col];
    }
    return sum;
}

// Modular warp-level kernel for matrix multiplication using the above device functions
// Computes out = x * clusters, where x is [M, D] and clusters (in constant memory) is [D, N_out].
// Each warp computes one output element (dot product) by having its lanes cooperate.
__global__ void matmul_warp_kernel(const float* __restrict__ x, float* __restrict__ out, int M, int D, int N_out) {
    // Determine the warp id and lane id within the warp
    int warp_id = (blockIdx.x * blockDim.x + threadIdx.x) / warpSize;
    int lane = threadIdx.x & (warpSize - 1);

    // Each warp is responsible for one element of the output matrix
    if (warp_id < M * N_out) {
        int row = warp_id / N_out;
        int col = warp_id % N_out;
        
        // Compute partial dot product using the modular dotProduct function
        float partial = dotProduct(x, row, D, N_out, col, lane);
        
        // Reduce the partial sums across the warp
        float sum = warpReduceSum(partial);
        
        // Lane 0 writes the final result
        if (lane == 0) {
            out[row * N_out + col] = sum;
        }
    }
}

// Forward function for NetVLAD with ghost clusters using modular CUDA device functions
// This function first computes the assignment via custom matrix multiplication (with warp-level reduction),
// then applies batch normalization, softmax, VLAD aggregation, and normalization as in the original implementation.

torch::Tensor forward(
    torch::Tensor x,
    torch::Tensor clusters,
    torch::Tensor clusters2,
    torch::Tensor bn_weight,
    torch::Tensor bn_bias,
    torch::Tensor bn_mean,
    torch::Tensor bn_var,
    bool is_training,
    int64_t cluster_size,
    int64_t feature_size
) {
    // x is expected to be [B, N, D]
    auto B = x.size(0);
    auto N = x.size(1);
    auto D = x.size(2);
    TORCH_CHECK(D == feature_size, "feature_size mismatch.");

    // Flatten x to [M, D] where M = B * N
    int64_t M = B * N;
    auto x_flat = x.reshape({M, D}).contiguous();
    
    // clusters is [D, (K+G)] where (K+G) >= cluster_size
    int N_out = clusters.size(1);
    auto assignment = torch::empty({M, N_out}, x.options());

    // Use the custom warp-level kernel if clusters fits in constant memory
    if (clusters.numel() <= MAX_CLUSTERS_SIZE) {
        auto clusters_contig = clusters.contiguous();
        size_t clusters_bytes = clusters_contig.numel() * sizeof(float);
        cudaError_t err = cudaMemcpyToSymbol(d_clusters, clusters_contig.data_ptr<float>(), clusters_bytes);
        TORCH_CHECK(err == cudaSuccess, "cudaMemcpyToSymbol failed: ", cudaGetErrorString(err));

        // Total output elements = M * N_out, with each warp computing one element
        int total_warps = M * N_out;
        int threadsPerBlock = 256; // e.g., 8 warps per block
        int warpsPerBlock = threadsPerBlock / 32;
        int blocks = (total_warps + warpsPerBlock - 1) / warpsPerBlock;

        matmul_warp_kernel<<<blocks, threadsPerBlock>>>(
            x_flat.data_ptr<float>(),
            assignment.data_ptr<float>(),
            M, D, N_out
        );
        err = cudaGetLastError();
        TORCH_CHECK(err == cudaSuccess, "Kernel launch failed: ", cudaGetErrorString(err));
        err = cudaDeviceSynchronize();
        TORCH_CHECK(err == cudaSuccess, "Kernel sync failed: ", cudaGetErrorString(err));
    } else {
        // Fallback to regular matmul if clusters does not fit in constant memory
        assignment = at::matmul(x_flat, clusters);
    }

    // Batch normalization
    assignment = at::batch_norm(
        assignment, bn_weight, bn_bias, bn_mean, bn_var,
        is_training, 0.1, 1e-5, true
    );

    // Softmax along dimension 1 and removing ghost clusters to yield [M, cluster_size]
    assignment = at::softmax(assignment, 1);
    assignment = assignment.narrow(1, 0, cluster_size);

    // Reshape to [B, N, cluster_size]
    assignment = assignment.reshape({B, N, cluster_size});

    // Compute a_sum = sum across the N dimension -> [B, 1, cluster_size]
    auto a_sum = assignment.sum(1, /*keepdim=*/true);
    // Multiply by clusters2 (expected shape: [1, D, cluster_size])
    auto a = a_sum * clusters2;

    // Transpose assignment to [B, cluster_size, N]
    assignment = assignment.transpose(1, 2);
    // Reshape x back to [B, N, D]
    auto x_reshaped = x_flat.reshape({B, N, D});

    // VLAD aggregation: compute [B, cluster_size, D] via bmm and then transpose to [B, D, cluster_size]
    auto vlad = at::bmm(assignment, x_reshaped);
    vlad = vlad.transpose(1, 2);
    vlad = vlad - a;

    // Intra-normalize across the D dimension
    vlad = vlad / (vlad.norm(2, {1}, /*keepdim=*/true) + 1e-12);
    
    // Flatten to [B, D * cluster_size] and perform final L2 normalization
    vlad = vlad.reshape({B, D * cluster_size});
    vlad = vlad / (vlad.norm(2, {1}, /*keepdim=*/true) + 1e-12);

    return vlad;
}

PYBIND11_MODULE(TORCH_EXTENSION_NAME, m) {
    m.def("forward", &forward, "NetVLAD with ghost clusters (Modular CUDA device functions)");
}
Performance Metrics
Metric Value Unit Variance Samples
Analysis Rules
Rule Description
Operation / Metric Value Unit
aten::zero_
CPU Time 511981.23 μs
Device Time 2248122.11 μs
Self CPU Time 92047.42 μs
Self Device Time 0.00 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
aten::fill_
CPU Time 419958.85 μs
Device Time 2248122.11 μs
Self CPU Time 119983.46 μs
Self Device Time 2248122.11 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
aten::matmul
CPU Time 833267.38 μs
Device Time 488343.45 μs
Self CPU Time 33486.67 μs
Self Device Time 0.00 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
aten::batch_norm
CPU Time 1710978.96 μs
Device Time 488396.07 μs
Self CPU Time 52138.31 μs
Self Device Time 0.00 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
aten::_batch_norm_impl_index
CPU Time 1658840.65 μs
Device Time 488396.07 μs
Self CPU Time 72498.31 μs
Self Device Time 0.00 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
aten::native_batch_norm
CPU Time 1531467.61 μs
Device Time 488396.07 μs
Self CPU Time 441495.49 μs
Self Device Time 420326.48 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
cudaLaunchKernel
CPU Time 2385576.39 μs
Device Time 0.00 μs
Self CPU Time 2385576.39 μs
Self Device Time 0.00 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
void at::native::vectorized_elementwise_kernel<4, at::native::FillFunctor<int>, at::detail::Array<char*, 1> >(int, at::native::FillFunctor<int>, at::detail::Array<char*, 1>)
CPU Time 0.00 μs
Device Time 2248122.11 μs
Self CPU Time 0.00 μs
Self Device Time 2248122.11 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
Status: Completed
45296 warnings generated when compiling for host.
Suppressed 45330 warnings (45283 in non-user code, 47 NOLINT).
Use -header-filter=.* to display errors from all non-system headers. Use -system-headers to display errors from system headers as well.
/home/robert_sakana_ai/llm_cuda/experiments/20250212_optimize_b5_s4_e1_v2/level_3/task_46/b5_s1_netvlad_modular_device_funcs/base/base.cu:22:85 bugprone-easily-swappable-parameters
22 | __device__ float dotProduct(const float* __restrict__ x, int row, int D, int N_out, int col, int lane) {
| ^~~~~~~~~~~~~~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250212_optimize_b5_s4_e1_v2/level_3/task_46/b5_s1_netvlad_modular_device_funcs/base/base.cu:22:89: note: the first parameter in the range is 'col'
22 | __device__ float dotProduct(const float* __restrict__ x, int row, int D, int N_out, int col, int lane) {
| ^~~
/home/robert_sakana_ai/llm_cuda/experiments/20250212_optimize_b5_s4_e1_v2/level_3/task_46/b5_s1_netvlad_modular_device_funcs/base/base.cu:22:98: note: the last parameter in the range is 'lane'
22 | __device__ float dotProduct(const float* __restrict__ x, int row, int D, int N_out, int col, int lane) {
| ^~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250212_optimize_b5_s4_e1_v2/level_3/task_46/b5_s1_netvlad_modular_device_funcs/base/base.cu:34:90: warning: 2 adjacent parameters of 'matmul_warp_kernel' of similar type ('int') are easily swapped by mistake [bugprone-easily-swappable-parameters]
34 | __global__ void matmul_warp_kernel(const float* __restrict__ x, float* __restrict__ out, int M, int D, int N_out) {
| ^~~~~~~~~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250212_optimize_b5_s4_e1_v2/level_3/task_46/b5_s1_netvlad_modular_device_funcs/base/base.cu:34:94: note: the first parameter in the range is 'M'
34 | __global__ void matmul_warp_kernel(const float* __restrict__ x, float* __restrict__ out, int M, int D, int N_out) {
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250212_optimize_b5_s4_e1_v2/level_3/task_46/b5_s1_netvlad_modular_device_funcs/base/base.cu:34:101: note: the last parameter in the range is 'D'
34 | __global__ void matmul_warp_kernel(const float* __restrict__ x, float* __restrict__ out, int M, int D, int N_out) {
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250212_optimize_b5_s4_e1_v2/level_3/task_46/b5_s1_netvlad_modular_device_funcs/base/base.cu:36:19: warning: narrowing conversion from 'unsigned int' to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
36 | int warp_id = (blockIdx.x * blockDim.x + threadIdx.x) / warpSize;
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250212_optimize_b5_s4_e1_v2/level_3/task_46/b5_s1_netvlad_modular_device_funcs/base/base.cu:37:16: warning: narrowing conversion from 'unsigned int' to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
37 | int lane = threadIdx.x & (warpSize - 1);
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250212_optimize_b5_s4_e1_v2/level_3/task_46/b5_s1_netvlad_modular_device_funcs/base/base.cu:62:19: warning: the parameter 'x' is copied for each invocation but only used as a const reference; consider making it a const reference [performance-unnecessary-value-param]
62 | torch::Tensor x,
| ^
| const &
/home/robert_sakana_ai/llm_cuda/experiments/20250212_optimize_b5_s4_e1_v2/level_3/task_46/b5_s1_netvlad_modular_device_funcs/base/base.cu:63:19: warning: the parameter 'clusters' is copied for each invocation but only used as a const reference; consider making it a const reference [performance-unnecessary-value-param]
63 | torch::Tensor clusters,
| ^
| const &
/home/robert_sakana_ai/llm_cuda/experiments/20250212_optimize_b5_s4_e1_v2/level_3/task_46/b5_s1_netvlad_modular_device_funcs/base/base.cu:64:5: warning: 2 adjacent parameters of 'forward' of similar type ('torch::Tensor') are easily swapped by mistake [bugprone-easily-swappable-parameters]
64 | torch::Tensor clusters2,
| ^~~~~~~~~~~~~~~~~~~~~~~~
65 | torch::Tensor bn_weight,
| ~~~~~~~~~~~~~~~~~~~~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250212_optimize_b5_s4_e1_v2/level_3/task_46/b5_s1_netvlad_modular_device_funcs/base/base.cu:64:19: note: the first parameter in the range is 'clusters2'
64 | torch::Tensor clusters2,
| ^~~~~~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250212_optimize_b5_s4_e1_v2/level_3/task_46/b5_s1_netvlad_modular_device_funcs/base/base.cu:65:19: note: the last parameter in the range is 'bn_weight'
65 | torch::Tensor bn_weight,
| ^~~~~~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250212_optimize_b5_s4_e1_v2/level_3/task_46/b5_s1_netvlad_modular_device_funcs/base/base.cu:64:19: warning: the parameter 'clusters2' is copied for each invocation but only used as a const reference; consider making it a const reference [performance-unnecessary-value-param]
64 | torch::Tensor clusters2,
| ^
| const &
/home/robert_sakana_ai/llm_cuda/experiments/20250212_optimize_b5_s4_e1_v2/level_3/task_46/b5_s1_netvlad_modular_device_funcs/base/base.cu:70:5: warning: 2 adjacent parameters of 'forward' of similar type ('int64_t') are easily swapped by mistake [bugprone-easily-swappable-parameters]
70 | int64_t cluster_size,
| ^~~~~~~~~~~~~~~~~~~~~
71 | int64_t feature_size
| ~~~~~~~~~~~~~~~~~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250212_optimize_b5_s4_e1_v2/level_3/task_46/b5_s1_netvlad_modular_device_funcs/base/base.cu:70:13: note: the first parameter in the range is 'cluster_size'
70 | int64_t cluster_size,
| ^~~~~~~~~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250212_optimize_b5_s4_e1_v2/level_3/task_46/b5_s1_netvlad_modular_device_funcs/base/base.cu:71:13: note: the last parameter in the range is 'feature_size'
71 | int64_t feature_size
| ^~~~~~~~~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250212_optimize_b5_s4_e1_v2/level_3/task_46/b5_s1_netvlad_modular_device_funcs/base/base.cu:84:17: warning: narrowing conversion from 'int64_t' (aka 'long') to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
84 | int N_out = clusters.size(1);
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250212_optimize_b5_s4_e1_v2/level_3/task_46/b5_s1_netvlad_modular_device_funcs/base/base.cu:95:27: warning: narrowing conversion from 'int64_t' (aka 'long') to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
95 | int total_warps = M * N_out;
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250212_optimize_b5_s4_e1_v2/level_3/task_46/b5_s1_netvlad_modular_device_funcs/base/base.cu:103:13: warning: narrowing conversion from 'int64_t' (aka 'long') to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
103 | M, D, N_out
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250212_optimize_b5_s4_e1_v2/level_3/task_46/b5_s1_netvlad_modular_device_funcs/base/base.cu:103:16: warning: narrowing conversion from 'int64_t' (aka 'long') to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
103 | M, D, N_out
| ^