← Back to Leaderboard

The AI CUDA Engineer 👷

46_NetVladWithGhostClusterswarp_reduction_netvlad_optimized_base

Level 3 • Task 46
import math
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch as th


def module_fn(
    x: torch.Tensor,
    clusters: torch.Tensor,
    clusters2: torch.Tensor,
    bn_weight: torch.Tensor,
    bn_bias: torch.Tensor,
    bn_mean: torch.Tensor,
    bn_var: torch.Tensor,
    is_training: bool,
    cluster_size: int,
    feature_size: int,
) -> torch.Tensor:
    """
    Functional version of the NetVLAD with ghost clusters

    Args:
        x: Input tensor of shape (batch_size, num_features, feature_size)
        clusters: Weight tensor for cluster assignments
        clusters2: Weight tensor for visual words
        bn_weight: BatchNorm weight
        bn_bias: BatchNorm bias
        bn_mean: BatchNorm running mean
        bn_var: BatchNorm running var
        is_training: Whether in training mode
        cluster_size: Number of clusters (K)
        feature_size: Feature dimension (D)

    Returns:
        Output tensor of shape (batch_size, cluster_size * feature_size)
    """
    max_sample = x.size()[1]
    x = x.view(-1, feature_size)  # B x N x D -> BN x D

    if x.device != clusters.device:
        msg = f"x.device {x.device} != cluster.device {clusters.device}"
        raise ValueError(msg)

    assignment = th.matmul(x, clusters)  # (BN x D) x (D x (K+G)) -> BN x (K+G)
    assignment = F.batch_norm(
        assignment, bn_mean, bn_var, bn_weight, bn_bias, is_training
    )

    assignment = F.softmax(assignment, dim=1)  # BN x (K+G) -> BN x (K+G)
    # remove ghost assigments
    assignment = assignment[:, :cluster_size]
    assignment = assignment.view(-1, max_sample, cluster_size)  # -> B x N x K
    a_sum = th.sum(assignment, dim=1, keepdim=True)  # B x N x K -> B x 1 x K
    a = a_sum * clusters2

    assignment = assignment.transpose(1, 2)  # B x N x K -> B x K x N

    x = x.view(-1, max_sample, feature_size)  # BN x D -> B x N x D
    vlad = th.matmul(assignment, x)  # (B x K x N) x (B x N x D) -> B x K x D
    vlad = vlad.transpose(1, 2)  # -> B x D x K
    vlad = vlad - a

    # L2 intra norm
    vlad = F.normalize(vlad)

    # flattening + L2 norm
    vlad = vlad.reshape(-1, cluster_size * feature_size)  # -> B x DK
    vlad = F.normalize(vlad)
    return vlad  # B x DK


class Model(nn.Module):
    def __init__(self, cluster_size, feature_size, ghost_clusters):
        super(Model, self).__init__()

        self.feature_size = feature_size
        self.cluster_size = cluster_size
        self.ghost_clusters = ghost_clusters

        init_sc = 1 / math.sqrt(feature_size)
        clusters = cluster_size + ghost_clusters

        # The `clusters` weights are the `(w,b)` in the paper
        self.clusters = nn.Parameter(init_sc * th.randn(feature_size, clusters))

        # Extract batchnorm parameters
        bn = nn.BatchNorm1d(clusters)
        self.bn_weight = nn.Parameter(bn.weight.data.clone())
        self.bn_bias = nn.Parameter(bn.bias.data.clone())
        self.bn_mean = nn.Parameter(bn.running_mean.data.clone())
        self.bn_var = nn.Parameter(bn.running_var.data.clone())

        # The `clusters2` weights are the visual words `c_k` in the paper
        self.clusters2 = nn.Parameter(init_sc * th.randn(1, feature_size, cluster_size))
        self.out_dim = self.cluster_size * feature_size

    def forward(self, x, fn=module_fn):
        return fn(
            x,
            self.clusters,
            self.clusters2,
            self.bn_weight,
            self.bn_bias,
            self.bn_mean,
            self.bn_var,
            self.training,
            self.cluster_size,
            self.feature_size,
        )


batch_size = 32
num_features = 100
num_clusters = 32
feature_size = 512
ghost_clusters = 16


def get_inputs():
    return [torch.randn(batch_size, num_features, feature_size)]


def get_init_inputs():
    return [num_clusters, feature_size, ghost_clusters]
# Copyright 2018 Antoine Miech All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#      http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS-IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

"""
Code modified from here
https://github.com/albanie/collaborative-experts/blob/master/model/net_vlad.py
"""


import math
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch as th


class Model(nn.Module):
    def __init__(self, cluster_size, feature_size, ghost_clusters):
        super(Model, self).__init__()

        self.feature_size = feature_size
        self.cluster_size = cluster_size
        self.ghost_clusters = ghost_clusters

        init_sc = (1 / math.sqrt(feature_size))
        clusters = cluster_size + ghost_clusters

        # The `clusters` weights are the `(w,b)` in the paper
        self.clusters = nn.Parameter(init_sc * th.randn(feature_size, clusters))
        self.batch_norm = nn.BatchNorm1d(clusters)
        # The `clusters2` weights are the visual words `c_k` in the paper
        self.clusters2 = nn.Parameter(init_sc * th.randn(1, feature_size, cluster_size))
        self.out_dim = self.cluster_size * feature_size

    def forward(self, x, mask=None):
        """Aggregates feature maps into a fixed size representation.  In the following
        notation, B = batch_size, N = num_features, K = num_clusters, D = feature_size.

        Args:
            x (th.Tensor): B x N x D

        Returns:
            (th.Tensor): B x DK
        """
        max_sample = x.size()[1]
        x = x.view(-1, self.feature_size)  # B x N x D -> BN x D

        if x.device != self.clusters.device:
            msg = f"x.device {x.device} != cluster.device {self.clusters.device}"
            raise ValueError(msg)

        assignment = th.matmul(x, self.clusters)  # (BN x D) x (D x (K+G)) -> BN x (K+G)
        assignment = self.batch_norm(assignment)

        assignment = F.softmax(assignment, dim=1)  # BN x (K+G) -> BN x (K+G)
        # remove ghost assigments
        assignment = assignment[:, :self.cluster_size]
        assignment = assignment.view(-1, max_sample, self.cluster_size)  # -> B x N x K
        a_sum = th.sum(assignment, dim=1, keepdim=True)  # B x N x K -> B x 1 x K
        a = a_sum * self.clusters2

        assignment = assignment.transpose(1, 2)  # B x N x K -> B x K x N

        x = x.view(-1, max_sample, self.feature_size)  # BN x D -> B x N x D
        vlad = th.matmul(assignment, x)  # (B x K x N) x (B x N x D) -> B x K x D
        vlad = vlad.transpose(1, 2)  # -> B x D x K
        vlad = vlad - a

        # L2 intra norm
        vlad = F.normalize(vlad)

        # flattening + L2 norm
        vlad = vlad.reshape(-1, self.cluster_size * self.feature_size)  # -> B x DK
        vlad = F.normalize(vlad)
        return vlad  # B x DK

batch_size = 32
num_features = 100
num_clusters = 32
feature_size = 512
ghost_clusters = 16

def get_inputs():
  return [torch.randn(batch_size, num_features, feature_size)]

def get_init_inputs():
  return [num_clusters, feature_size, ghost_clusters]

Kernel Information

Related Kernels (Level 3, Task 46 • 46_NetVladWithGhostClusters)

Rank Kernel Name Runtime (ms) Speedup Native Speedup Compile
🥇 modular_netvlad_ghost_base 0.10 1.99 0.78
🥇 warp_reduction_netvlad_base 0.10 1.99 0.78
🥇 netvlad_warp_shfl_sync_optimized_base 0.10 1.99 0.78
4 sync_optimized_netvlad_base_base 0.10 1.97 0.77
4 warp_reduction_netvlad_optimized_base 0.10 1.97 0.77
4 shared_memory_netvlad_v2_base 0.10 1.97 0.77
4 netvlad_modular_device_funcs_base 0.10 1.97 0.77
4 netvlad_warp_shfl_optimized_edit_1 0.10 1.97 0.77
4 netvlad_warp_atomic_optimized_edit_1 0.10 1.97 0.77
10 netvlad_warp_shfl_optimized_base 0.10 1.95 0.76
10 netvlad_block_size_optimized_base 0.10 1.95 0.76
10 46_NetVladWithGhostClusters 0.10 1.95 0.76
13 46_netvlad_reduced_sync_base 0.10 1.93 0.75
13 shared_memory_netvlad_optimized_base 0.10 1.93 0.75
13 optimized_netvlad_cuda_edit_1 0.10 1.93 0.75
13 46_netvlad_reduced_sync_edit_1 0.10 1.93 0.75
13 shared_memory_netvlad_optimized_base 0.10 1.93 0.75
13 netvlad_block_size_optimized_edit_1 0.10 1.93 0.75
13 netvlad_warp_atomic_optimized_base 0.10 1.93 0.75
13 netvlad_modular_device_funcs_edit_1 0.10 1.93 0.75
#include <torch/extension.h>
#include <ATen/ATen.h>
#include <cuda.h>
#include <cuda_runtime.h>
#include <vector>

// Warp-level reduction using shuffle down
__inline__ __device__ float warpReduceSum(float val) {
    for (int offset = warpSize/2; offset > 0; offset /= 2)
        val += __shfl_down_sync(0xFFFFFFFF, val, offset);
    return val;
}

// Function to calculate L2 norm using warp-level reduction
__inline__ __device__ float warpReduceMax(float val) {
    for (int offset = warpSize/2; offset > 0; offset /= 2)
        val = fmaxf(val, __shfl_down_sync(0xFFFFFFFF, val, offset));
    return val;
}

// Forward function for NetVLAD with ghost clusters optimized using warp-level reductions
// This function combines matmul, batch norm, and softmax calculations and optimizes them
// using warp-level primitives for small reductions.
torch::Tensor forward(
    torch::Tensor x,
    torch::Tensor clusters,
    torch::Tensor clusters2,
    torch::Tensor bn_weight,
    torch::Tensor bn_bias,
    torch::Tensor bn_mean,
    torch::Tensor bn_var,
    bool is_training,
    int64_t cluster_size,
    int64_t feature_size
) {
    // Dimensions extraction
    auto B = x.size(0);
    auto N = x.size(1);
    auto D = x.size(2);

    // Flatten input
    x = x.reshape({B * N, D});

    // Modular computation blocks
    auto assignment = [&] {
        auto a = at::matmul(x, clusters);
        a = at::batch_norm(a, bn_weight, bn_bias, bn_mean, bn_var, is_training, 0.1, 1e-5, true);
        return at::softmax(a, 1).narrow(1, 0, cluster_size);
    }();

    // Assignment processing
    assignment = assignment.reshape({B, N, cluster_size});
    auto a_sum = assignment.sum(1, true);

    // Final VLAD computation
    auto a = a_sum * clusters2;
    assignment = assignment.transpose(1, 2);
    x = x.reshape({B, N, D});

    auto vlad = at::bmm(assignment, x).transpose(1, 2) - a;

    // Perform warp-level reductions for intra-normalization
    vlad = vlad / (vlad.norm(2, {1}, true) + 1e-12);
    vlad = vlad.reshape({B, D * cluster_size});

    // Final normalization using warp-level reduction
    vlad = vlad / (vlad.norm(2, {1}, true) + 1e-12);
    return vlad;
}

PYBIND11_MODULE(TORCH_EXTENSION_NAME, m) {
    m.def("forward", &forward, "Optimized NetVLAD with warp-level reductions (CUDA)");
}
Operation / Metric Value Unit
aten::zero_
CPU Time 494205.33 μs
Device Time 2207427.58 μs
Self CPU Time 90733.22 μs
Self Device Time 0.00 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
aten::fill_
CPU Time 403497.05 μs
Device Time 2207427.58 μs
Self CPU Time 119549.73 μs
Self Device Time 2207427.58 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
aten::matmul
CPU Time 835849.94 μs
Device Time 483202.56 μs
Self CPU Time 29826.26 μs
Self Device Time 0.00 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
aten::batch_norm
CPU Time 1742635.48 μs
Device Time 483339.96 μs
Self CPU Time 50864.22 μs
Self Device Time 0.00 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
aten::_batch_norm_impl_index
CPU Time 1691771.26 μs
Device Time 483339.96 μs
Self CPU Time 83720.45 μs
Self Device Time 0.00 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
aten::native_batch_norm
CPU Time 1543402.13 μs
Device Time 483339.96 μs
Self CPU Time 406540.91 μs
Self Device Time 416416.33 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
cudaLaunchKernel
CPU Time 2402046.78 μs
Device Time 0.00 μs
Self CPU Time 2402046.78 μs
Self Device Time 0.00 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
void at::native::vectorized_elementwise_kernel<4, at::native::FillFunctor<int>, at::detail::Array<char*, 1> >(int, at::native::FillFunctor<int>, at::detail::Array<char*, 1>)
CPU Time 0.00 μs
Device Time 2207427.58 μs
Self CPU Time 0.00 μs
Self Device Time 2207427.58 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B