← Back to Leaderboard

The AI CUDA Engineer 👷

21_Conv2d_Add_Scale_Sigmoid_GroupNormatomic_optimized_kernel_base_base

Level 2 • Task 21
import torch
import torch.nn as nn
import torch.nn.functional as F


def module_fn(
    x: torch.Tensor,
    conv_weight: torch.Tensor,
    conv_bias: torch.Tensor,
    bias: torch.Tensor,
    scale: torch.Tensor,
    group_norm_weight: torch.Tensor,
    group_norm_bias: torch.Tensor,
    num_groups: int,
) -> torch.Tensor:
    """
    Applies convolution, bias addition, scaling, sigmoid activation and group normalization.

    Args:
        x (torch.Tensor): Input tensor of shape (batch_size, in_channels, height, width)
        conv_weight (torch.Tensor): Convolution weight tensor
        conv_bias (torch.Tensor): Convolution bias tensor
        bias (torch.Tensor): Bias tensor for addition
        scale (torch.Tensor): Scale tensor for multiplication
        group_norm_weight (torch.Tensor): Group norm weight tensor
        group_norm_bias (torch.Tensor): Group norm bias tensor
        num_groups (int): Number of groups for group normalization

    Returns:
        torch.Tensor: Output tensor after applying convolution, bias, scale, sigmoid and group norm
    """
    x = F.conv2d(x, conv_weight, bias=conv_bias)
    x = x + bias
    x = x * scale
    x = torch.sigmoid(x)
    x = F.group_norm(x, num_groups, group_norm_weight, group_norm_bias)
    return x


class Model(nn.Module):
    """
    Model that performs a convolution, adds a bias term, scales, applies sigmoid, and performs group normalization.
    """

    def __init__(
        self,
        in_channels,
        out_channels,
        kernel_size,
        num_groups,
        bias_shape,
        scale_shape,
    ):
        super(Model, self).__init__()
        conv = nn.Conv2d(in_channels, out_channels, kernel_size)
        self.conv_weight = conv.weight
        self.conv_bias = nn.Parameter(
            conv.bias + torch.ones_like(conv.bias) * 0.02
        )  # make sure its nonzero
        self.bias = nn.Parameter(torch.randn(bias_shape) * 0.02)
        self.scale = nn.Parameter(torch.randn(scale_shape) * 0.02)
        group_norm = nn.GroupNorm(num_groups, out_channels)
        self.group_norm_weight = group_norm.weight
        self.group_norm_bias = nn.Parameter(
            group_norm.bias + torch.ones_like(group_norm.bias) * 0.02
        )  # make sure its nonzero

    def forward(self, x, num_groups, fn=module_fn):
        return fn(
            x,
            self.conv_weight,
            self.conv_bias,
            self.bias,
            self.scale,
            self.group_norm_weight,
            self.group_norm_bias,
            num_groups,
        )


batch_size = 128
in_channels = 3
out_channels = 16
height, width = 32, 32
kernel_size = 3
num_groups = 8
bias_shape = (out_channels, 1, 1)
scale_shape = (out_channels, 1, 1)


def get_inputs():
    return [torch.randn(batch_size, in_channels, height, width), num_groups]


def get_init_inputs():
    return [in_channels, out_channels, kernel_size, num_groups, bias_shape, scale_shape]
import torch
import torch.nn as nn

class Model(nn.Module):
    """
    Model that performs a convolution, adds a bias term, scales, applies sigmoid, and performs group normalization.
    """
    def __init__(self, in_channels, out_channels, kernel_size, num_groups, bias_shape, scale_shape):
        super(Model, self).__init__()
        self.conv = nn.Conv2d(in_channels, out_channels, kernel_size)
        self.conv.bias = nn.Parameter(self.conv.bias + torch.ones_like(self.conv.bias) * 0.02)
        self.bias = nn.Parameter(torch.randn(bias_shape)*0.02) 
        self.scale = nn.Parameter(torch.randn(scale_shape)*0.02)
        self.group_norm = nn.GroupNorm(num_groups, out_channels)
        self.group_norm.bias = nn.Parameter(self.group_norm.bias + torch.ones_like(self.group_norm.bias) * 0.02)

    def forward(self, x):
        x = self.conv(x)
        x = x + self.bias
        x = x * self.scale
        x = torch.sigmoid(x)
        x = self.group_norm(x)
        return x

batch_size = 128
in_channels = 3
out_channels = 16
height, width = 32, 32
kernel_size = 3
num_groups = 8
bias_shape = (out_channels, 1, 1)
scale_shape = (out_channels, 1, 1)

def get_inputs():
    return [torch.randn(batch_size, in_channels, height, width)]

def get_init_inputs():
    return [in_channels, out_channels, kernel_size, num_groups, bias_shape, scale_shape]

Kernel Information

Related Kernels (Level 2, Task 21 • 21_Conv2d_Add_Scale_Sigmoid_GroupNorm)

Rank Kernel Name Runtime (ms) Speedup Native Speedup Compile
🥇 shared_memory_coalesced_access_kernel_base 0.04 1.79 1.53
🥈 fused_elem_groupnorm_reduced_sync_base_base 0.04 1.74 1.49
🥈 fused_optimized_warp_base 0.04 1.74 1.49
🥈 optimized_memory_access_kernel_base 0.04 1.74 1.49
🥈 atomic_optimized_kernel_base_base 0.04 1.74 1.49
🥈 optimized_memory_access_kernel_base 0.04 1.74 1.49
🥈 optimized_fused_kernel_base 0.04 1.74 1.49
8 fused_warp_reduce_groupnorm_base 0.04 1.70 1.46
8 fused_warp_groupnorm_base 0.04 1.70 1.46
8 shared_memory_reuse_kernel_base 0.04 1.70 1.46
8 fused_lockfree_groupnorm_base_base 0.04 1.70 1.46
8 fused_stride_kernel_base 0.04 1.70 1.46
8 fused_elem_groupnorm_no_atomic_base 0.04 1.70 1.46
8 fused_elem_groupnorm_min_sync_base_base 0.04 1.70 1.46
8 unrolled_fused_kernel_base_base 0.04 1.70 1.46
16 optimized_modular_kernel_base 0.04 1.67 1.43
16 fused_strided_groupnorm_base_base 0.04 1.67 1.43
18 fused_sigmoid_groupnorm_base 0.05 1.63 1.40
19 fused_sigmoid_groupnorm_base 0.05 1.60 1.37
19 block_size_optimized_kernel_base_base 0.05 1.60 1.37
#include <torch/extension.h>
#include <ATen/ATen.h>
#include <cuda.h>
#include <cuda_runtime.h>
#include <math.h>

#define CHECK_CUDA(x) TORCH_CHECK(x.is_cuda(), #x " must be a CUDA tensor.")
#define CHECK_CONTIGUOUS(x) TORCH_CHECK(x.is_contiguous(), #x " must be contiguous.")
#define CHECK_INPUT(x) CHECK_CUDA(x); CHECK_CONTIGUOUS(x)

__global__ void atomic_optimized_kernel(
    const float* __restrict__ x,
    float* __restrict__ y,
    const float* __restrict__ bias,
    const float* __restrict__ scale,
    const float* __restrict__ gn_weight,
    const float* __restrict__ gn_bias,
    int N, int C, int H, int W,
    int num_groups,
    bool bias_broadcast,
    bool scale_broadcast,
    float eps) {

    extern __shared__ float shared[];
    float* shared_sum = shared;
    float* shared_sum_sq = &shared[blockDim.x];
    float* shared_bias = &shared[2 * blockDim.x];
    float* shared_scale = &shared[2 * blockDim.x + C/num_groups];

    const int group_idx = blockIdx.x % num_groups;
    const int sample_idx = blockIdx.x / num_groups;
    const int channels_per_group = C / num_groups;
    const int group_size = channels_per_group * H * W;
    const int sample_offset = sample_idx * C * H * W;
    const int group_offset = group_idx * channels_per_group;

    if (threadIdx.x < channels_per_group) {
        int c = group_offset + threadIdx.x;
        shared_bias[threadIdx.x] = bias_broadcast ? bias[0] : bias[c];
        shared_scale[threadIdx.x] = scale_broadcast ? scale[0] : scale[c];
    }
    __syncthreads();

    float local_sum = 0.0f;
    float local_sum_sq = 0.0f;

    for (int i = threadIdx.x; i < group_size; i += blockDim.x) {
        const int c_local = i / (H * W);
        const int hw = i % (H * W);
        const int c = group_offset + c_local;
        const int idx = sample_offset + c * H * W + hw;

        const float val = x[idx];
        const float b_val = shared_bias[c_local];
        const float s_val = shared_scale[c_local];
        const float activated = 1.0f / (1.0f + expf(-(val + b_val) * s_val));
        
        y[idx] = activated;
        local_sum += activated;
        local_sum_sq += activated * activated;
    }

    shared_sum[threadIdx.x] = local_sum;
    shared_sum_sq[threadIdx.x] = local_sum_sq;
    __syncthreads();

    for (int stride = blockDim.x/2; stride > 0; stride >>= 1) {
        if (threadIdx.x < stride) {
            shared_sum[threadIdx.x] += shared_sum[threadIdx.x + stride];
            shared_sum_sq[threadIdx.x] += shared_sum_sq[threadIdx.x + stride];
        }
        __syncthreads();
    }

    if (threadIdx.x == 0) {
        const float mean = shared_sum[0] / group_size;
        const float variance = (shared_sum_sq[0] / group_size) - (mean * mean);
        shared_sum[0] = mean;
        shared_sum_sq[0] = rsqrtf(variance + eps);
    }
    __syncthreads();

    const float mean = shared_sum[0];
    const float inv_std = shared_sum_sq[0];

    for (int i = threadIdx.x; i < group_size; i += blockDim.x) {
        const int c_local = i / (H * W);
        const int hw = i % (H * W);
        const int c = group_offset + c_local;
        const int idx = sample_offset + c * H * W + hw;

        const float val = y[idx];
        const float normalized = (val - mean) * inv_std;
        y[idx] = normalized * gn_weight[c] + gn_bias[c];
    }
}

void atomic_optimized_cuda(
    at::Tensor x,
    at::Tensor bias,
    at::Tensor scale,
    at::Tensor y,
    at::Tensor gn_weight,
    at::Tensor gn_bias,
    int64_t num_groups,
    bool bias_broadcast,
    bool scale_broadcast,
    float eps) {

    const int N = x.size(0);
    const int C = x.size(1);
    const int H = x.size(2);
    const int W = x.size(3);
    
    const int threads = 256;
    const int blocks = N * num_groups;
    const int channels_per_group = C / num_groups;
    
    const size_t shared_mem_size = 
        (2 * threads + 2 * channels_per_group) * sizeof(float);

    atomic_optimized_kernel<<<blocks, threads, shared_mem_size>>>(
        x.data_ptr<float>(),
        y.data_ptr<float>(),
        bias.data_ptr<float>(),
        scale.data_ptr<float>(),
        gn_weight.data_ptr<float>(),
        gn_bias.data_ptr<float>(),
        N, C, H, W,
        num_groups,
        bias_broadcast,
        scale_broadcast,
        eps);

    cudaError_t err = cudaGetLastError();
    if (err != cudaSuccess) {
        TORCH_CHECK(false, "CUDA kernel failed : ", cudaGetErrorString(err));
    }
}

at::Tensor module_fn_forward(
    at::Tensor x,
    at::Tensor conv_weight,
    at::Tensor conv_bias,
    at::Tensor bias,
    at::Tensor scale,
    at::Tensor gn_weight,
    at::Tensor gn_bias,
    int64_t num_groups) {

    CHECK_INPUT(x);
    CHECK_INPUT(conv_weight);
    if (conv_bias.defined()) CHECK_INPUT(conv_bias);
    CHECK_INPUT(bias);
    CHECK_INPUT(scale);
    CHECK_INPUT(gn_weight);
    CHECK_INPUT(gn_bias);

    x = at::conv2d(x, conv_weight, conv_bias);
    at::Tensor y = at::empty_like(x);

    bool bias_broadcast = (bias.numel() == 1);
    bool scale_broadcast = (scale.numel() == 1);
    float eps = 1e-5;

    atomic_optimized_cuda(x, bias, scale, y, gn_weight, gn_bias,
                         num_groups, bias_broadcast, scale_broadcast, eps);

    return y;
}

PYBIND11_MODULE(TORCH_EXTENSION_NAME, m) {
    m.def("forward", &module_fn_forward, "Atomic optimized kernel (CUDA)");
}
Performance Metrics
Metric Value Unit Variance Samples
Executed Ipc Active 2.492 inst/cycle 0.000 5
Executed Ipc Elapsed 1.990 inst/cycle 0.001 5
Issue Slots Busy 62.482 % 0.004 5
Issued Ipc Active 2.500 inst/cycle 0.000 5
SM Busy 62.482 % 0.004 5
Memory Throughput 509245993923.580 byte/second 47506615920007421952.000 5
Mem Busy 24.400 % 0.108 5
Max Bandwidth 29.686 % 0.153 5
L1/TEX Hit Rate 61.522 % 0.002 5
L2 Hit Rate 70.236 % 0.001 5
Mem Pipes Busy 19.614 % 0.057 5
Warp Cycles Per Issued Instruction 20.480 cycle 0.011 5
Warp Cycles Per Executed Instruction 20.536 cycle 0.011 5
Avg. Active Threads Per Warp 31.180 0.000 5
Avg. Not Predicated Off Threads Per Warp 28.200 0.000 5
Max Active Clusters 0.000 cluster 0.000 5
Max Cluster Size 8.000 block 0.000 5
Overall GPU Occupancy 0.000 % 0.000 5
Cluster Occupancy 0.000 % 0.000 5
Block Limit SM 32.000 block 0.000 5
Block Limit Registers 8.000 block 0.000 5
Block Limit Shared Mem 20.000 block 0.000 5
Block Limit Warps 8.000 block 0.000 5
Theoretical Active Warps per SM 64.000 warp 0.000 5
Theoretical Occupancy 100.000 % 0.000 5
Achieved Occupancy 80.256 % 0.216 5
Achieved Active Warps Per SM 51.362 warp 0.087 5
Analysis Rules
Rule Description
INF HighPipeUtilization ALU is the highest-utilized pipeline (44.3%) based on active cycles, taking into account the rates of its different instructions. It executes integer and logic operations. It is well-utilized, but should not be a bottleneck.
INF CPIStall Check the Warp Stall Sampling (All Cycles) table for the top stall locations in your source based on sampling data. The Kernel Profiling Guide (https://docs.nvidia.com/nsight-compute/ProfilingGuide/index.html#metrics-reference) provides more details on each stall reason.
WRN Occupancy This kernel's theoretical occupancy is not impacted by any block limit. The difference between calculated theoretical (100.0%) and measured achieved occupancy (80.5%) can be the result of warp scheduling overheads or workload imbalances during the kernel execution. Load imbalances can occur between warps within a block as well as across blocks of the same kernel. See the CUDA Best Practices Guide (https://docs.nvidia.com/cuda/cuda-c-best-practices-guide/index.html#occupancy) for more details on optimizing occupancy.
Operation / Metric Value Unit
aten::fill_
CPU Time 163378.85 μs
Device Time 1079075.32 μs
Self CPU Time 31315.33 μs
Self Device Time 1079075.32 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
aten::zero_
CPU Time 187362.41 μs
Device Time 1079075.32 μs
Self CPU Time 24001.52 μs
Self Device Time 0.00 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
aten::conv2d
CPU Time 1182412.26 μs
Device Time 386982.86 μs
Self CPU Time 22844.56 μs
Self Device Time 0.00 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
aten::convolution
CPU Time 1159567.71 μs
Device Time 386982.86 μs
Self CPU Time 28173.98 μs
Self Device Time 0.00 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
aten::_convolution
CPU Time 1131393.73 μs
Device Time 386982.86 μs
Self CPU Time 56544.77 μs
Self Device Time 0.00 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
aten::cudnn_convolution
CPU Time 943073.94 μs
Device Time 274694.85 μs
Self CPU Time 217639.68 μs
Self Device Time 274694.85 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
cudaLaunchKernel
CPU Time 974372.55 μs
Device Time 27989.80 μs
Self CPU Time 974372.55 μs
Self Device Time 27989.80 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
void at::native::vectorized_elementwise_kernel<4, at::native::FillFunctor<int>, at::detail::Array<char*, 1> >(int, at::native::FillFunctor<int>, at::detail::Array<char*, 1>)
CPU Time 0.00 μs
Device Time 1079075.32 μs
Self CPU Time 0.00 μs
Self Device Time 1079075.32 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
Status: Completed
45315 warnings generated when compiling for host.
Suppressed 45328 warnings (45281 in non-user code, 47 NOLINT).
Use -header-filter=.* to display errors from all non-system headers. Use -system-headers to display errors from system headers as well.
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_2/task_21/b10_s3_atomic_optimized_kernel_base/base/base.cu:7:35 bugprone-macro-parentheses
7 | #define CHECK_CUDA(x) TORCH_CHECK(x.is_cuda(), #x " must be a CUDA tensor.")
| ^
| ()
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_2/task_21/b10_s3_atomic_optimized_kernel_base/base/base.cu:8:41: warning: macro argument should be enclosed in parentheses [bugprone-macro-parentheses]
8 | #define CHECK_CONTIGUOUS(x) TORCH_CHECK(x.is_contiguous(), #x " must be contiguous.")
| ^
| ()
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_2/task_21/b10_s3_atomic_optimized_kernel_base/base/base.cu:14:5: warning: 3 adjacent parameters of 'atomic_optimized_kernel' of similar type ('const float *__restrict') are easily swapped by mistake [bugprone-easily-swappable-parameters]
14 | const float* __restrict__ bias,
| ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
15 | const float* __restrict__ scale,
| ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
16 | const float* __restrict__ gn_weight,
| ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_2/task_21/b10_s3_atomic_optimized_kernel_base/base/base.cu:14:31: note: the first parameter in the range is 'bias'
14 | const float* __restrict__ bias,
| ^~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_2/task_21/b10_s3_atomic_optimized_kernel_base/base/base.cu:16:31: note: the last parameter in the range is 'gn_weight'
16 | const float* __restrict__ gn_weight,
| ^~~~~~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_2/task_21/b10_s3_atomic_optimized_kernel_base/base/base.cu:18:5: warning: 2 adjacent parameters of 'atomic_optimized_kernel' of similar type ('int') are easily swapped by mistake [bugprone-easily-swappable-parameters]
18 | int N, int C, int H, int W,
| ^~~~~~~~~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_2/task_21/b10_s3_atomic_optimized_kernel_base/base/base.cu:18:9: note: the first parameter in the range is 'N'
18 | int N, int C, int H, int W,
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_2/task_21/b10_s3_atomic_optimized_kernel_base/base/base.cu:18:16: note: the last parameter in the range is 'C'
18 | int N, int C, int H, int W,
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_2/task_21/b10_s3_atomic_optimized_kernel_base/base/base.cu:18:26: warning: 2 adjacent parameters of 'atomic_optimized_kernel' of similar type ('int') are easily swapped by mistake [bugprone-easily-swappable-parameters]
18 | int N, int C, int H, int W,
| ^~~~~~
19 | int num_groups,
| ~~~~~~~~~~~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_2/task_21/b10_s3_atomic_optimized_kernel_base/base/base.cu:18:30: note: the first parameter in the range is 'W'
18 | int N, int C, int H, int W,
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_2/task_21/b10_s3_atomic_optimized_kernel_base/base/base.cu:19:9: note: the last parameter in the range is 'num_groups'
19 | int num_groups,
| ^~~~~~~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_2/task_21/b10_s3_atomic_optimized_kernel_base/base/base.cu:27:27: warning: result of multiplication in type 'unsigned int' is used as a pointer offset after an implicit widening conversion to type 'size_t' [bugprone-implicit-widening-of-multiplication-result]
27 | float* shared_bias = &shared[2 * blockDim.x];
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_2/task_21/b10_s3_atomic_optimized_kernel_base/base/base.cu:27:34: note: make conversion explicit to silence this warning
6 | float* shared_bias = &shared[2 * blockDim.x];
| ^~~~~~~~~~~~~~
| static_cast<size_t>( )
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_2/task_21/b10_s3_atomic_optimized_kernel_base/base/base.cu:27:34: note: perform multiplication in a wider type
27 | float* shared_bias = &shared[2 * blockDim.x];
| ^
| static_cast<size_t>( )
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_2/task_21/b10_s3_atomic_optimized_kernel_base/base/base.cu:30:27: warning: narrowing conversion from 'unsigned int' to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
30 | const int group_idx = blockIdx.x % num_groups;
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_2/task_21/b10_s3_atomic_optimized_kernel_base/base/base.cu:31:28: warning: narrowing conversion from 'unsigned int' to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
31 | const int sample_idx = blockIdx.x / num_groups;
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_2/task_21/b10_s3_atomic_optimized_kernel_base/base/base.cu:38:17: warning: narrowing conversion from 'unsigned int' to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
38 | int c = group_offset + threadIdx.x;
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_2/task_21/b10_s3_atomic_optimized_kernel_base/base/base.cu:47:18: warning: narrowing conversion from 'unsigned int' to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
47 | for (int i = threadIdx.x; i < group_size; i += blockDim.x) {
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_2/task_21/b10_s3_atomic_optimized_kernel_base/base/base.cu:47:52: warning: narrowing conversion from 'unsigned int' to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
47 | for (int i = threadIdx.x; i < group_size; i += blockDim.x) {
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_2/task_21/b10_s3_atomic_optimized_kernel_base/base/base.cu:67:23: warning: narrowing conversion from 'unsigned int' to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
67 | for (int stride = blockDim.x/2; stride > 0; stride >>= 1) {
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_2/task_21/b10_s3_atomic_optimized_kernel_base/base/base.cu:76:44: warning: narrowing conversion from 'int' to 'float' [bugprone-narrowing-conversions]
76 | const float mean = shared_sum[0] / group_size;
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_2/task_21/b10_s3_atomic_optimized_kernel_base/base/base.cu:77:52: warning: narrowing conversion from 'int' to 'float' [bugprone-narrowing-conversions]
77 | const float variance = (shared_sum_sq[0] / group_size) - (mean * mean);
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_2/task_21/b10_s3_atomic_optimized_kernel_base/base/base.cu:86:18: warning: narrowing conversion from 'unsigned int' to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
86 | for (int i = threadIdx.x; i < group_size; i += blockDim.x) {
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_2/task_21/b10_s3_atomic_optimized_kernel_base/base/base.cu:86:52: warning: narrowing conversion from 'unsigned int' to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
86 | for (int i = threadIdx.x; i < group_size; i += blockDim.x) {
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_2/task_21/b10_s3_atomic_optimized_kernel_base/base/base.cu:99:16: warning: the parameter 'x' is copied for each invocation but only used as a const reference; consider making it a const reference [performance-unnecessary-value-param]
99 | at::Tensor x,
| ^
| const &
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_2/task_21/b10_s3_atomic_optimized_kernel_base/base/base.cu:100:16: warning: the parameter 'bias' is copied for each invocation but only used as a const reference; consider making it a const reference [performance-unnecessary-value-param]
100 | at::Tensor bias,
| ^
| const &
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_2/task_21/b10_s3_atomic_optimized_kernel_base/base/base.cu:101:16: warning: the parameter 'scale' is copied for each invocation but only used as a const reference; consider making it a const reference [performance-unnecessary-value-param]
101 | at::Tensor scale,
| ^
| const &
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_2/task_21/b10_s3_atomic_optimized_kernel_base/base/base.cu:102:16: warning: the parameter 'y' is copied for each invocation but only used as a const reference; consider making it a const reference [performance-unnecessary-value-param]
102 | at::Tensor y,
| ^
| const &
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_2/task_21/b10_s3_atomic_optimized_kernel_base/base/base.cu:103:16: warning: the parameter 'gn_weight' is copied for each invocation but only used as a const reference; consider making it a const reference [performance-unnecessary-value-param]
103 | at::Tensor gn_weight,
| ^
| const &
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_2/task_21/b10_s3_atomic_optimized_kernel_base/base/base.cu:104:16: warning: the parameter 'gn_bias' is copied for each invocation but only used as a const reference; consider making it a const reference [performance-unnecessary-value-param]
104 | at::Tensor gn_bias,
| ^
| const &
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_2/task_21/b10_s3_atomic_optimized_kernel_base/base/base.cu:110:19: warning: narrowing conversion from 'int64_t' (aka 'long') to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
110 | const int N = x.size(0);
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_2/task_21/b10_s3_atomic_optimized_kernel_base/base/base.cu:111:19: warning: narrowing conversion from 'int64_t' (aka 'long') to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
111 | const int C = x.size(1);
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_2/task_21/b10_s3_atomic_optimized_kernel_base/base/base.cu:112:19: warning: narrowing conversion from 'int64_t' (aka 'long') to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
112 | const int H = x.size(2);
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_2/task_21/b10_s3_atomic_optimized_kernel_base/base/base.cu:113:19: warning: narrowing conversion from 'int64_t' (aka 'long') to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
113 | const int W = x.size(3);
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_2/task_21/b10_s3_atomic_optimized_kernel_base/base/base.cu:116:24: warning: narrowing conversion from 'int64_t' (aka 'long') to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
116 | const int blocks = N * num_groups;
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_2/task_21/b10_s3_atomic_optimized_kernel_base/base/base.cu:117:36: warning: narrowing conversion from 'int64_t' (aka 'long') to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
117 | const int channels_per_group = C / num_groups;
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_2/task_21/b10_s3_atomic_optimized_kernel_base/base/base.cu:130:9: warning: narrowing conversion from 'int64_t' (aka 'long') to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
130 | num_groups,
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_2/task_21/b10_s3_atomic_optimized_kernel_base/base/base.cu:143:16: warning: the parameter 'conv_weight' is copied for each invocation but only used as a const reference; consider making it a const reference [performance-unnecessary-value-param]
143 | at::Tensor conv_weight,
| ^
| const &
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_2/task_21/b10_s3_atomic_optimized_kernel_base/base/base.cu:145:16: warning: the parameter 'bias' is copied for each invocation but only used as a const reference; consider making it a const reference [performance-unnecessary-value-param]
145 | at::Tensor bias,
| ^
| const &
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_2/task_21/b10_s3_atomic_optimized_kernel_base/base/base.cu:146:16: warning: the parameter 'scale' is copied for each invocation but only used as a const reference; consider making it a const reference [performance-unnecessary-value-param]
146 | at::Tensor scale,
| ^
| const &
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_2/task_21/b10_s3_atomic_optimized_kernel_base/base/base.cu:147:16: warning: the parameter 'gn_weight' is copied for each invocation but only used as a const reference; consider making it a const reference [performance-unnecessary-value-param]
147 | at::Tensor gn_weight,
| ^
| const &
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_2/task_21/b10_s3_atomic_optimized_kernel_base/base/base.cu:148:16: warning: the parameter 'gn_bias' is copied for each invocation but only used as a const reference; consider making it a const reference [performance-unnecessary-value-param]
148 | at::Tensor gn_bias,
| ^
| const &