← Back to Leaderboard

The AI CUDA Engineer 👷

21_Conv2d_Add_Scale_Sigmoid_GroupNormfused_sigmoid_groupnorm_base

Level 2 • Task 21
import torch
import torch.nn as nn
import torch.nn.functional as F


def module_fn(
    x: torch.Tensor,
    conv_weight: torch.Tensor,
    conv_bias: torch.Tensor,
    bias: torch.Tensor,
    scale: torch.Tensor,
    group_norm_weight: torch.Tensor,
    group_norm_bias: torch.Tensor,
    num_groups: int,
) -> torch.Tensor:
    """
    Applies convolution, bias addition, scaling, sigmoid activation and group normalization.

    Args:
        x (torch.Tensor): Input tensor of shape (batch_size, in_channels, height, width)
        conv_weight (torch.Tensor): Convolution weight tensor
        conv_bias (torch.Tensor): Convolution bias tensor
        bias (torch.Tensor): Bias tensor for addition
        scale (torch.Tensor): Scale tensor for multiplication
        group_norm_weight (torch.Tensor): Group norm weight tensor
        group_norm_bias (torch.Tensor): Group norm bias tensor
        num_groups (int): Number of groups for group normalization

    Returns:
        torch.Tensor: Output tensor after applying convolution, bias, scale, sigmoid and group norm
    """
    x = F.conv2d(x, conv_weight, bias=conv_bias)
    x = x + bias
    x = x * scale
    x = torch.sigmoid(x)
    x = F.group_norm(x, num_groups, group_norm_weight, group_norm_bias)
    return x


class Model(nn.Module):
    """
    Model that performs a convolution, adds a bias term, scales, applies sigmoid, and performs group normalization.
    """

    def __init__(
        self,
        in_channels,
        out_channels,
        kernel_size,
        num_groups,
        bias_shape,
        scale_shape,
    ):
        super(Model, self).__init__()
        conv = nn.Conv2d(in_channels, out_channels, kernel_size)
        self.conv_weight = conv.weight
        self.conv_bias = nn.Parameter(
            conv.bias + torch.ones_like(conv.bias) * 0.02
        )  # make sure its nonzero
        self.bias = nn.Parameter(torch.randn(bias_shape) * 0.02)
        self.scale = nn.Parameter(torch.randn(scale_shape) * 0.02)
        group_norm = nn.GroupNorm(num_groups, out_channels)
        self.group_norm_weight = group_norm.weight
        self.group_norm_bias = nn.Parameter(
            group_norm.bias + torch.ones_like(group_norm.bias) * 0.02
        )  # make sure its nonzero

    def forward(self, x, num_groups, fn=module_fn):
        return fn(
            x,
            self.conv_weight,
            self.conv_bias,
            self.bias,
            self.scale,
            self.group_norm_weight,
            self.group_norm_bias,
            num_groups,
        )


batch_size = 128
in_channels = 3
out_channels = 16
height, width = 32, 32
kernel_size = 3
num_groups = 8
bias_shape = (out_channels, 1, 1)
scale_shape = (out_channels, 1, 1)


def get_inputs():
    return [torch.randn(batch_size, in_channels, height, width), num_groups]


def get_init_inputs():
    return [in_channels, out_channels, kernel_size, num_groups, bias_shape, scale_shape]
import torch
import torch.nn as nn

class Model(nn.Module):
    """
    Model that performs a convolution, adds a bias term, scales, applies sigmoid, and performs group normalization.
    """
    def __init__(self, in_channels, out_channels, kernel_size, num_groups, bias_shape, scale_shape):
        super(Model, self).__init__()
        self.conv = nn.Conv2d(in_channels, out_channels, kernel_size)
        self.conv.bias = nn.Parameter(self.conv.bias + torch.ones_like(self.conv.bias) * 0.02)
        self.bias = nn.Parameter(torch.randn(bias_shape)*0.02) 
        self.scale = nn.Parameter(torch.randn(scale_shape)*0.02)
        self.group_norm = nn.GroupNorm(num_groups, out_channels)
        self.group_norm.bias = nn.Parameter(self.group_norm.bias + torch.ones_like(self.group_norm.bias) * 0.02)

    def forward(self, x):
        x = self.conv(x)
        x = x + self.bias
        x = x * self.scale
        x = torch.sigmoid(x)
        x = self.group_norm(x)
        return x

batch_size = 128
in_channels = 3
out_channels = 16
height, width = 32, 32
kernel_size = 3
num_groups = 8
bias_shape = (out_channels, 1, 1)
scale_shape = (out_channels, 1, 1)

def get_inputs():
    return [torch.randn(batch_size, in_channels, height, width)]

def get_init_inputs():
    return [in_channels, out_channels, kernel_size, num_groups, bias_shape, scale_shape]

Kernel Information

Related Kernels (Level 2, Task 21 • 21_Conv2d_Add_Scale_Sigmoid_GroupNorm)

Rank Kernel Name Runtime (ms) Speedup Native Speedup Compile
🥇 shared_memory_coalesced_access_kernel_base 0.04 1.79 1.53
🥈 fused_elem_groupnorm_reduced_sync_base_base 0.04 1.74 1.49
🥈 fused_optimized_warp_base 0.04 1.74 1.49
🥈 optimized_memory_access_kernel_base 0.04 1.74 1.49
🥈 atomic_optimized_kernel_base_base 0.04 1.74 1.49
🥈 optimized_memory_access_kernel_base 0.04 1.74 1.49
🥈 optimized_fused_kernel_base 0.04 1.74 1.49
8 fused_warp_reduce_groupnorm_base 0.04 1.70 1.46
8 fused_warp_groupnorm_base 0.04 1.70 1.46
8 shared_memory_reuse_kernel_base 0.04 1.70 1.46
8 fused_lockfree_groupnorm_base_base 0.04 1.70 1.46
8 fused_stride_kernel_base 0.04 1.70 1.46
8 fused_elem_groupnorm_no_atomic_base 0.04 1.70 1.46
8 fused_elem_groupnorm_min_sync_base_base 0.04 1.70 1.46
8 unrolled_fused_kernel_base_base 0.04 1.70 1.46
16 optimized_modular_kernel_base 0.04 1.67 1.43
16 fused_strided_groupnorm_base_base 0.04 1.67 1.43
18 fused_sigmoid_groupnorm_base 0.05 1.63 1.40
19 fused_sigmoid_groupnorm_base 0.05 1.60 1.37
19 block_size_optimized_kernel_base_base 0.05 1.60 1.37
#include <torch/extension.h>
#include <ATen/ATen.h>
#include <cuda.h>
#include <cuda_runtime.h>
#include <math.h>

// Macro checks
#define CHECK_CUDA(x) TORCH_CHECK(x.is_cuda(), #x " must be a CUDA tensor.")
#define CHECK_CONTIGUOUS(x) TORCH_CHECK(x.is_contiguous(), #x " must be contiguous.")
#define CHECK_INPUT(x) CHECK_CUDA(x); CHECK_CONTIGUOUS(x)


// This kernel fuses the element-wise transformation (bias addition, scaling and sigmoid activation)
// with group normalization. Instead of writing the activation result to global memory and then reading it
// back for group normalization, the kernel computes local sums in registers, uses shared memory reduction
// to compute group mean and variance, and then re-computes the activation to produce the normalized output.
// Although the activation is computed twice, this eliminates extra global memory transactions, which is
// beneficial when the kernel is memory bound.

__global__ void fused_elemwise_groupnorm_kernel(
    const float* __restrict__ x,
    float* __restrict__ y,
    const float* __restrict__ bias,
    const float* __restrict__ scale,
    const float* __restrict__ gn_weight,
    const float* __restrict__ gn_bias,
    int N, int C, int H, int W,
    int num_groups,
    bool bias_broadcast,
    bool scale_broadcast,
    float eps) {

    // Each block is responsible for one group from one sample.
    int block_id = blockIdx.x; // block id runs from 0 to N*num_groups-1
    int sample_idx = block_id / num_groups;
    int group_idx = block_id % num_groups;

    int channels_per_group = C / num_groups;
    int group_size = channels_per_group * H * W;
    int sample_offset = sample_idx * C * H * W;
    int group_channel_offset = group_idx * channels_per_group;

    // Shared memory to perform reduction for sum and sum of squares
    extern __shared__ float shared_mem[];
    float* shared_sum = shared_mem;
    float* shared_sum_sq = &shared_mem[blockDim.x];

    int tid = threadIdx.x;
    int stride = blockDim.x;

    float local_sum = 0.0f;
    float local_sum_sq = 0.0f;

    // First pass: compute the element-wise activation and accumulate local sums
    // Activation: act = sigmoid((x + bias) * scale) = 1/(1+exp(-((x+bias)*scale)))
    for (int i = tid; i < group_size; i += stride) {
        int c_local = i / (H * W);
        int hw = i % (H * W);
        int c = group_channel_offset + c_local;
        int idx = sample_offset + c * H * W + hw;

        float x_val = __ldg(&x[idx]);
        float b_val = bias_broadcast ? __ldg(&bias[0]) : __ldg(&bias[c]);
        float s_val = scale_broadcast ? __ldg(&scale[0]) : __ldg(&scale[c]);

        float act = 1.0f / (1.0f + expf(-((x_val + b_val) * s_val)));
        local_sum += act;
        local_sum_sq += act * act;
    }

    // Write the results to shared memory
    shared_sum[tid] = local_sum;
    shared_sum_sq[tid] = local_sum_sq;
    __syncthreads();

    // Perform reduction in shared memory
    for (int s = blockDim.x / 2; s > 0; s >>= 1) {
        if (tid < s) {
            shared_sum[tid] += shared_sum[tid + s];
            shared_sum_sq[tid] += shared_sum_sq[tid + s];
        }
        __syncthreads();
    }

    // Calculate group mean and variance
    float mean = shared_sum[0] / group_size;
    float variance = shared_sum_sq[0] / group_size - mean * mean;
    float inv_std = rsqrtf(variance + eps);
    __syncthreads();

    // Second pass: re-compute activation and apply group normalization
    for (int i = tid; i < group_size; i += stride) {
        int c_local = i / (H * W);
        int hw = i % (H * W);
        int c = group_channel_offset + c_local;
        int idx = sample_offset + c * H * W + hw;

        float x_val = __ldg(&x[idx]);
        float b_val = bias_broadcast ? __ldg(&bias[0]) : __ldg(&bias[c]);
        float s_val = scale_broadcast ? __ldg(&scale[0]) : __ldg(&scale[c]);

        float act = 1.0f / (1.0f + expf(-((x_val + b_val) * s_val)));
        float normalized = (act - mean) * inv_std;

        float gamma = __ldg(&gn_weight[c]);
        float beta = __ldg(&gn_bias[c]);

        y[idx] = gamma * normalized + beta;
    }
}

// Launcher function for the fused kernel
void fused_elem_groupnorm_cuda(
    at::Tensor x,
    at::Tensor bias,
    at::Tensor scale,
    at::Tensor y,
    at::Tensor gn_weight,
    at::Tensor gn_bias,
    int64_t num_groups,
    bool bias_broadcast,
    bool scale_broadcast,
    float eps) {

    const int N = x.size(0);
    const int C = x.size(1);
    const int H = x.size(2);
    const int W = x.size(3);

    const int threads = 512;
    const int blocks = N * num_groups; // one block per group per sample
    const int shared_mem_size = 2 * threads * sizeof(float);

    fused_elemwise_groupnorm_kernel<<<blocks, threads, shared_mem_size>>>(
        x.data_ptr<float>(),
        y.data_ptr<float>(),
        bias.data_ptr<float>(),
        scale.data_ptr<float>(),
        gn_weight.data_ptr<float>(),
        gn_bias.data_ptr<float>(),
        N, C, H, W,
        num_groups,
        bias_broadcast,
        scale_broadcast,
        eps);

    cudaError_t err = cudaGetLastError();
    TORCH_CHECK(err == cudaSuccess, "CUDA kernel failed : ", cudaGetErrorString(err));
}

// Forward function exposed to Python. It performs convolution first, and then applies the fused kernel
// to perform the activation and group normalization in one pass.

at::Tensor module_fn_forward(
    at::Tensor x,
    at::Tensor conv_weight,
    at::Tensor conv_bias,
    at::Tensor bias,
    at::Tensor scale,
    at::Tensor gn_weight,
    at::Tensor gn_bias,
    int64_t num_groups) {

    CHECK_INPUT(x);
    CHECK_INPUT(conv_weight);
    if (conv_bias.defined()) CHECK_INPUT(conv_bias);
    CHECK_INPUT(bias);
    CHECK_INPUT(scale);
    CHECK_INPUT(gn_weight);
    CHECK_INPUT(gn_bias);

    // Perform convolution
    x = at::conv2d(x, conv_weight, conv_bias);

    // Allocate output tensor
    at::Tensor y = at::empty_like(x);

    fused_elem_groupnorm_cuda(
        x, bias, scale, y, gn_weight, gn_bias,
        num_groups,
        bias.numel() == 1,
        scale.numel() == 1,
        1e-5);

    return y;
}

PYBIND11_MODULE(TORCH_EXTENSION_NAME, m) {
    m.def("forward", &module_fn_forward, "Fused sigmoid and group normalization forward (CUDA)");
}
Performance Metrics
Metric Value Unit Variance Samples
Executed Ipc Active 2.616 inst/cycle 0.000 5
Executed Ipc Elapsed 2.216 inst/cycle 0.000 5
Issue Slots Busy 65.574 % 0.110 5
Issued Ipc Active 2.624 inst/cycle 0.000 5
SM Busy 65.574 % 0.110 5
Memory Throughput 395285099560.158 byte/second 4153031304901060096.000 5
Mem Busy 21.566 % 0.010 5
Max Bandwidth 20.618 % 0.010 5
L1/TEX Hit Rate 62.844 % 0.000 5
L2 Hit Rate 56.018 % 0.155 5
Mem Pipes Busy 29.770 % 0.020 5
Warp Cycles Per Issued Instruction 20.846 cycle 0.001 5
Warp Cycles Per Executed Instruction 20.900 cycle 0.001 5
Avg. Active Threads Per Warp 31.550 0.000 5
Avg. Not Predicated Off Threads Per Warp 27.500 0.000 5
Max Active Clusters 0.000 cluster 0.000 5
Max Cluster Size 8.000 block 0.000 5
Overall GPU Occupancy 0.000 % 0.000 5
Cluster Occupancy 0.000 % 0.000 5
Block Limit SM 32.000 block 0.000 5
Block Limit Registers 4.000 block 0.000 5
Block Limit Shared Mem 12.000 block 0.000 5
Block Limit Warps 4.000 block 0.000 5
Theoretical Active Warps per SM 64.000 warp 0.000 5
Theoretical Occupancy 100.000 % 0.000 5
Achieved Occupancy 85.846 % 0.015 5
Achieved Active Warps Per SM 54.940 warp 0.006 5
Analysis Rules
Rule Description
INF HighPipeUtilization ALU is the highest-utilized pipeline (46.3%) based on active cycles, taking into account the rates of its different instructions. It executes integer and logic operations. It is well-utilized, but should not be a bottleneck.
WRN Occupancy This kernel's theoretical occupancy is not impacted by any block limit. The difference between calculated theoretical (100.0%) and measured achieved occupancy (85.8%) can be the result of warp scheduling overheads or workload imbalances during the kernel execution. Load imbalances can occur between warps within a block as well as across blocks of the same kernel. See the CUDA Best Practices Guide (https://docs.nvidia.com/cuda/cuda-c-best-practices-guide/index.html#occupancy) for more details on optimizing occupancy.
Operation / Metric Value Unit
aten::fill_
CPU Time 187189.84 μs
Device Time 1089240.98 μs
Self CPU Time 33350.65 μs
Self Device Time 1089240.98 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
aten::zero_
CPU Time 213414.46 μs
Device Time 1089240.98 μs
Self CPU Time 26246.83 μs
Self Device Time 0.00 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
aten::conv2d
CPU Time 1190236.20 μs
Device Time 387303.54 μs
Self CPU Time 25905.10 μs
Self Device Time 0.00 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
aten::convolution
CPU Time 1164331.11 μs
Device Time 387303.54 μs
Self CPU Time 31090.63 μs
Self Device Time 0.00 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
aten::_convolution
CPU Time 1133240.48 μs
Device Time 387303.54 μs
Self CPU Time 60689.72 μs
Self Device Time 0.00 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
aten::cudnn_convolution
CPU Time 926103.02 μs
Device Time 276793.75 μs
Self CPU Time 228916.57 μs
Self Device Time 276793.75 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
cudaLaunchKernel
CPU Time 969458.77 μs
Device Time 28141.72 μs
Self CPU Time 969458.77 μs
Self Device Time 28141.72 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
void at::native::vectorized_elementwise_kernel<4, at::native::FillFunctor<int>, at::detail::Array<char*, 1> >(int, at::native::FillFunctor<int>, at::detail::Array<char*, 1>)
CPU Time 0.00 μs
Device Time 1089240.98 μs
Self CPU Time 0.00 μs
Self Device Time 1089240.98 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
Status: Completed
45310 warnings generated when compiling for host.
Suppressed 45328 warnings (45281 in non-user code, 47 NOLINT).
Use -header-filter=.* to display errors from all non-system headers. Use -system-headers to display errors from system headers as well.
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_2/task_21/b4_s1_fused_sigmoid_groupnorm/base/base.cu:8:35 bugprone-macro-parentheses
8 | #define CHECK_CUDA(x) TORCH_CHECK(x.is_cuda(), #x " must be a CUDA tensor.")
| ^
| ()
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_2/task_21/b4_s1_fused_sigmoid_groupnorm/base/base.cu:9:41: warning: macro argument should be enclosed in parentheses [bugprone-macro-parentheses]
9 | #define CHECK_CONTIGUOUS(x) TORCH_CHECK(x.is_contiguous(), #x " must be contiguous.")
| ^
| ()
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_2/task_21/b4_s1_fused_sigmoid_groupnorm/base/base.cu:23:5: warning: 4 adjacent parameters of 'fused_elemwise_groupnorm_kernel' of similar type ('const float *__restrict') are easily swapped by mistake [bugprone-easily-swappable-parameters]
23 | const float* __restrict__ bias,
| ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
24 | const float* __restrict__ scale,
| ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
25 | const float* __restrict__ gn_weight,
| ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
26 | const float* __restrict__ gn_bias,
| ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_2/task_21/b4_s1_fused_sigmoid_groupnorm/base/base.cu:23:31: note: the first parameter in the range is 'bias'
23 | const float* __restrict__ bias,
| ^~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_2/task_21/b4_s1_fused_sigmoid_groupnorm/base/base.cu:26:31: note: the last parameter in the range is 'gn_bias'
26 | const float* __restrict__ gn_bias,
| ^~~~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_2/task_21/b4_s1_fused_sigmoid_groupnorm/base/base.cu:27:5: warning: 2 adjacent parameters of 'fused_elemwise_groupnorm_kernel' of similar type ('int') are easily swapped by mistake [bugprone-easily-swappable-parameters]
27 | int N, int C, int H, int W,
| ^~~~~~~~~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_2/task_21/b4_s1_fused_sigmoid_groupnorm/base/base.cu:27:9: note: the first parameter in the range is 'N'
27 | int N, int C, int H, int W,
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_2/task_21/b4_s1_fused_sigmoid_groupnorm/base/base.cu:27:16: note: the last parameter in the range is 'C'
27 | int N, int C, int H, int W,
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_2/task_21/b4_s1_fused_sigmoid_groupnorm/base/base.cu:27:26: warning: 2 adjacent parameters of 'fused_elemwise_groupnorm_kernel' of similar type ('int') are easily swapped by mistake [bugprone-easily-swappable-parameters]
27 | int N, int C, int H, int W,
| ^~~~~~
28 | int num_groups,
| ~~~~~~~~~~~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_2/task_21/b4_s1_fused_sigmoid_groupnorm/base/base.cu:27:30: note: the first parameter in the range is 'W'
27 | int N, int C, int H, int W,
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_2/task_21/b4_s1_fused_sigmoid_groupnorm/base/base.cu:28:9: note: the last parameter in the range is 'num_groups'
28 | int num_groups,
| ^~~~~~~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_2/task_21/b4_s1_fused_sigmoid_groupnorm/base/base.cu:34:20: warning: narrowing conversion from 'unsigned int' to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
34 | int block_id = blockIdx.x; // block id runs from 0 to N*num_groups-1
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_2/task_21/b4_s1_fused_sigmoid_groupnorm/base/base.cu:48:15: warning: narrowing conversion from 'unsigned int' to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
48 | int tid = threadIdx.x;
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_2/task_21/b4_s1_fused_sigmoid_groupnorm/base/base.cu:49:18: warning: narrowing conversion from 'unsigned int' to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
49 | int stride = blockDim.x;
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_2/task_21/b4_s1_fused_sigmoid_groupnorm/base/base.cu:77:18: warning: narrowing conversion from 'unsigned int' to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
77 | for (int s = blockDim.x / 2; s > 0; s >>= 1) {
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_2/task_21/b4_s1_fused_sigmoid_groupnorm/base/base.cu:86:34: warning: narrowing conversion from 'int' to 'float' [bugprone-narrowing-conversions]
86 | float mean = shared_sum[0] / group_size;
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_2/task_21/b4_s1_fused_sigmoid_groupnorm/base/base.cu:87:41: warning: narrowing conversion from 'int' to 'float' [bugprone-narrowing-conversions]
87 | float variance = shared_sum_sq[0] / group_size - mean * mean;
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_2/task_21/b4_s1_fused_sigmoid_groupnorm/base/base.cu:114:16: warning: the parameter 'x' is copied for each invocation but only used as a const reference; consider making it a const reference [performance-unnecessary-value-param]
114 | at::Tensor x,
| ^
| const &
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_2/task_21/b4_s1_fused_sigmoid_groupnorm/base/base.cu:115:16: warning: the parameter 'bias' is copied for each invocation but only used as a const reference; consider making it a const reference [performance-unnecessary-value-param]
115 | at::Tensor bias,
| ^
| const &
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_2/task_21/b4_s1_fused_sigmoid_groupnorm/base/base.cu:116:16: warning: the parameter 'scale' is copied for each invocation but only used as a const reference; consider making it a const reference [performance-unnecessary-value-param]
116 | at::Tensor scale,
| ^
| const &
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_2/task_21/b4_s1_fused_sigmoid_groupnorm/base/base.cu:117:16: warning: the parameter 'y' is copied for each invocation but only used as a const reference; consider making it a const reference [performance-unnecessary-value-param]
117 | at::Tensor y,
| ^
| const &
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_2/task_21/b4_s1_fused_sigmoid_groupnorm/base/base.cu:118:16: warning: the parameter 'gn_weight' is copied for each invocation but only used as a const reference; consider making it a const reference [performance-unnecessary-value-param]
118 | at::Tensor gn_weight,
| ^
| const &
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_2/task_21/b4_s1_fused_sigmoid_groupnorm/base/base.cu:119:16: warning: the parameter 'gn_bias' is copied for each invocation but only used as a const reference; consider making it a const reference [performance-unnecessary-value-param]
119 | at::Tensor gn_bias,
| ^
| const &
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_2/task_21/b4_s1_fused_sigmoid_groupnorm/base/base.cu:125:19: warning: narrowing conversion from 'int64_t' (aka 'long') to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
125 | const int N = x.size(0);
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_2/task_21/b4_s1_fused_sigmoid_groupnorm/base/base.cu:126:19: warning: narrowing conversion from 'int64_t' (aka 'long') to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
126 | const int C = x.size(1);
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_2/task_21/b4_s1_fused_sigmoid_groupnorm/base/base.cu:127:19: warning: narrowing conversion from 'int64_t' (aka 'long') to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
127 | const int H = x.size(2);
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_2/task_21/b4_s1_fused_sigmoid_groupnorm/base/base.cu:128:19: warning: narrowing conversion from 'int64_t' (aka 'long') to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
128 | const int W = x.size(3);
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_2/task_21/b4_s1_fused_sigmoid_groupnorm/base/base.cu:131:24: warning: narrowing conversion from 'int64_t' (aka 'long') to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
131 | const int blocks = N * num_groups; // one block per group per sample
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_2/task_21/b4_s1_fused_sigmoid_groupnorm/base/base.cu:132:33: warning: performing an implicit widening conversion to type 'unsigned long' of a multiplication performed in type 'int' [bugprone-implicit-widening-of-multiplication-result]
132 | const int shared_mem_size = 2 * threads * sizeof(float);
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_2/task_21/b4_s1_fused_sigmoid_groupnorm/base/base.cu:132:33: note: make conversion explicit to silence this warning
6 | const int shared_mem_size = 2 * threads * sizeof(float);
| ^~~~~~~~~~~
| static_cast<unsigned long>( )
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_2/task_21/b4_s1_fused_sigmoid_groupnorm/base/base.cu:132:33: note: perform multiplication in a wider type
132 | const int shared_mem_size = 2 * threads * sizeof(float);
| ^
| static_cast<long>( )
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_2/task_21/b4_s1_fused_sigmoid_groupnorm/base/base.cu:142:9: warning: narrowing conversion from 'int64_t' (aka 'long') to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
142 | num_groups,
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_2/task_21/b4_s1_fused_sigmoid_groupnorm/base/base.cu:156:16: warning: the parameter 'conv_weight' is copied for each invocation but only used as a const reference; consider making it a const reference [performance-unnecessary-value-param]
156 | at::Tensor conv_weight,
| ^
| const &
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_2/task_21/b4_s1_fused_sigmoid_groupnorm/base/base.cu:158:16: warning: the parameter 'bias' is copied for each invocation but only used as a const reference; consider making it a const reference [performance-unnecessary-value-param]
158 | at::Tensor bias,
| ^
| const &
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_2/task_21/b4_s1_fused_sigmoid_groupnorm/base/base.cu:159:16: warning: the parameter 'scale' is copied for each invocation but only used as a const reference; consider making it a const reference [performance-unnecessary-value-param]
159 | at::Tensor scale,
| ^
| const &
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_2/task_21/b4_s1_fused_sigmoid_groupnorm/base/base.cu:160:16: warning: the parameter 'gn_weight' is copied for each invocation but only used as a const reference; consider making it a const reference [performance-unnecessary-value-param]
160 | at::Tensor gn_weight,
| ^
| const &
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_2/task_21/b4_s1_fused_sigmoid_groupnorm/base/base.cu:161:16: warning: the parameter 'gn_bias' is copied for each invocation but only used as a const reference; consider making it a const reference [performance-unnecessary-value-param]
161 | at::Tensor gn_bias,
| ^
| const &