← Back to Leaderboard

The AI CUDA Engineer 👷

21_Conv2d_Add_Scale_Sigmoid_GroupNormfused_optimized_warp_base

Level 2 • Task 21
import torch
import torch.nn as nn
import torch.nn.functional as F


def module_fn(
    x: torch.Tensor,
    conv_weight: torch.Tensor,
    conv_bias: torch.Tensor,
    bias: torch.Tensor,
    scale: torch.Tensor,
    group_norm_weight: torch.Tensor,
    group_norm_bias: torch.Tensor,
    num_groups: int,
) -> torch.Tensor:
    """
    Applies convolution, bias addition, scaling, sigmoid activation and group normalization.

    Args:
        x (torch.Tensor): Input tensor of shape (batch_size, in_channels, height, width)
        conv_weight (torch.Tensor): Convolution weight tensor
        conv_bias (torch.Tensor): Convolution bias tensor
        bias (torch.Tensor): Bias tensor for addition
        scale (torch.Tensor): Scale tensor for multiplication
        group_norm_weight (torch.Tensor): Group norm weight tensor
        group_norm_bias (torch.Tensor): Group norm bias tensor
        num_groups (int): Number of groups for group normalization

    Returns:
        torch.Tensor: Output tensor after applying convolution, bias, scale, sigmoid and group norm
    """
    x = F.conv2d(x, conv_weight, bias=conv_bias)
    x = x + bias
    x = x * scale
    x = torch.sigmoid(x)
    x = F.group_norm(x, num_groups, group_norm_weight, group_norm_bias)
    return x


class Model(nn.Module):
    """
    Model that performs a convolution, adds a bias term, scales, applies sigmoid, and performs group normalization.
    """

    def __init__(
        self,
        in_channels,
        out_channels,
        kernel_size,
        num_groups,
        bias_shape,
        scale_shape,
    ):
        super(Model, self).__init__()
        conv = nn.Conv2d(in_channels, out_channels, kernel_size)
        self.conv_weight = conv.weight
        self.conv_bias = nn.Parameter(
            conv.bias + torch.ones_like(conv.bias) * 0.02
        )  # make sure its nonzero
        self.bias = nn.Parameter(torch.randn(bias_shape) * 0.02)
        self.scale = nn.Parameter(torch.randn(scale_shape) * 0.02)
        group_norm = nn.GroupNorm(num_groups, out_channels)
        self.group_norm_weight = group_norm.weight
        self.group_norm_bias = nn.Parameter(
            group_norm.bias + torch.ones_like(group_norm.bias) * 0.02
        )  # make sure its nonzero

    def forward(self, x, num_groups, fn=module_fn):
        return fn(
            x,
            self.conv_weight,
            self.conv_bias,
            self.bias,
            self.scale,
            self.group_norm_weight,
            self.group_norm_bias,
            num_groups,
        )


batch_size = 128
in_channels = 3
out_channels = 16
height, width = 32, 32
kernel_size = 3
num_groups = 8
bias_shape = (out_channels, 1, 1)
scale_shape = (out_channels, 1, 1)


def get_inputs():
    return [torch.randn(batch_size, in_channels, height, width), num_groups]


def get_init_inputs():
    return [in_channels, out_channels, kernel_size, num_groups, bias_shape, scale_shape]
import torch
import torch.nn as nn

class Model(nn.Module):
    """
    Model that performs a convolution, adds a bias term, scales, applies sigmoid, and performs group normalization.
    """
    def __init__(self, in_channels, out_channels, kernel_size, num_groups, bias_shape, scale_shape):
        super(Model, self).__init__()
        self.conv = nn.Conv2d(in_channels, out_channels, kernel_size)
        self.conv.bias = nn.Parameter(self.conv.bias + torch.ones_like(self.conv.bias) * 0.02)
        self.bias = nn.Parameter(torch.randn(bias_shape)*0.02) 
        self.scale = nn.Parameter(torch.randn(scale_shape)*0.02)
        self.group_norm = nn.GroupNorm(num_groups, out_channels)
        self.group_norm.bias = nn.Parameter(self.group_norm.bias + torch.ones_like(self.group_norm.bias) * 0.02)

    def forward(self, x):
        x = self.conv(x)
        x = x + self.bias
        x = x * self.scale
        x = torch.sigmoid(x)
        x = self.group_norm(x)
        return x

batch_size = 128
in_channels = 3
out_channels = 16
height, width = 32, 32
kernel_size = 3
num_groups = 8
bias_shape = (out_channels, 1, 1)
scale_shape = (out_channels, 1, 1)

def get_inputs():
    return [torch.randn(batch_size, in_channels, height, width)]

def get_init_inputs():
    return [in_channels, out_channels, kernel_size, num_groups, bias_shape, scale_shape]

Kernel Information

Related Kernels (Level 2, Task 21 • 21_Conv2d_Add_Scale_Sigmoid_GroupNorm)

Rank Kernel Name Runtime (ms) Speedup Native Speedup Compile
🥇 shared_memory_coalesced_access_kernel_base 0.04 1.79 1.53
🥈 fused_elem_groupnorm_reduced_sync_base_base 0.04 1.74 1.49
🥈 fused_optimized_warp_base 0.04 1.74 1.49
🥈 optimized_memory_access_kernel_base 0.04 1.74 1.49
🥈 atomic_optimized_kernel_base_base 0.04 1.74 1.49
🥈 optimized_memory_access_kernel_base 0.04 1.74 1.49
🥈 optimized_fused_kernel_base 0.04 1.74 1.49
8 fused_warp_reduce_groupnorm_base 0.04 1.70 1.46
8 fused_warp_groupnorm_base 0.04 1.70 1.46
8 shared_memory_reuse_kernel_base 0.04 1.70 1.46
8 fused_lockfree_groupnorm_base_base 0.04 1.70 1.46
8 fused_stride_kernel_base 0.04 1.70 1.46
8 fused_elem_groupnorm_no_atomic_base 0.04 1.70 1.46
8 fused_elem_groupnorm_min_sync_base_base 0.04 1.70 1.46
8 unrolled_fused_kernel_base_base 0.04 1.70 1.46
16 optimized_modular_kernel_base 0.04 1.67 1.43
16 fused_strided_groupnorm_base_base 0.04 1.67 1.43
18 fused_sigmoid_groupnorm_base 0.05 1.63 1.40
19 fused_sigmoid_groupnorm_base 0.05 1.60 1.37
19 block_size_optimized_kernel_base_base 0.05 1.60 1.37
#include <torch/extension.h>
#include <ATen/ATen.h>
#include <cuda.h>
#include <cuda_runtime.h>
#include <math.h>

#define CHECK_CUDA(x) TORCH_CHECK(x.is_cuda(), #x " must be a CUDA tensor.")
#define CHECK_CONTIGUOUS(x) TORCH_CHECK(x.is_contiguous(), #x " must be contiguous.")
#define CHECK_INPUT(x) CHECK_CUDA(x); CHECK_CONTIGUOUS(x)

// Warp-level reduction for a float value
__inline__ __device__ float warpReduceSum(float val) {
    // All threads in a warp participate
    for (int offset = warpSize/2; offset > 0; offset /= 2)
        val += __shfl_down_sync(0xffffffff, val, offset);
    return val;
}

// Fused kernel with warp-level reduction for improved efficiency
// This kernel performs bias addition, scaling, sigmoid activation and group normalization
// in a single pass, using warp shuffles to reduce shared memory overhead during reduction.
__global__ void fused_optimized_warp_kernel(
    const float* __restrict__ x,    // Input tensor after conv2d: [N, C, H, W]
    float* __restrict__ y,          // Output tensor: [N, C, H, W]
    const float* __restrict__ bias, // Bias for elementwise op (broadcastable)
    const float* __restrict__ scale,// Scale for elementwise op (broadcastable)
    const float* __restrict__ gn_weight, // GroupNorm weight, shape [C]
    const float* __restrict__ gn_bias,   // GroupNorm bias, shape [C]
    int N, int C, int H, int W,
    int num_groups,
    bool bias_broadcast,
    bool scale_broadcast,
    float eps) {

    // Determine which sample and which group this block is processing
    int group_idx = blockIdx.x % num_groups;
    int sample_idx = blockIdx.x / num_groups;
    int channels_per_group = C / num_groups;
    int group_size = channels_per_group * H * W;  // Total number of elements in this group

    // Offsets to index into the input/output tensor
    int sample_offset = sample_idx * C * H * W;
    int group_channel_offset = group_idx * channels_per_group;

    // Each thread computes partial sum and sum of squares over its assigned elements
    float local_sum = 0.0f;
    float local_sum_sq = 0.0f;
    
    // First pass: apply elementwise operations and compute activation (sigmoid)
    for (int i = threadIdx.x; i < group_size; i += blockDim.x) {
        int c_local = i / (H * W);
        int hw = i % (H * W);
        int c = group_channel_offset + c_local;
        int idx = sample_offset + c * (H * W) + hw;

        float in_val = x[idx];
        float b_val = bias_broadcast ? bias[0] : bias[c];
        float s_val = scale_broadcast ? scale[0] : scale[c];
        float pre_act = (in_val + b_val) * s_val;
        // Sigmoid activation
        float v = 1.0f / (1.0f + expf(-pre_act));
        y[idx] = v;  // store intermediate result for later use
        local_sum += v;
        local_sum_sq += v * v;
    }

    // Use warp-level reduction to reduce local sums within each warp
    float sum = warpReduceSum(local_sum);
    float sum_sq = warpReduceSum(local_sum_sq);

    int lane = threadIdx.x % warpSize;       // lane index within the warp
    int warpId = threadIdx.x / warpSize;       // current warp index

    // Allocate shared memory to store the reduction results from each warp
    extern __shared__ float shared[]; // size will be 2 * (blockDim.x/warpSize) floats
    float* warp_sum = shared;                         // first half: partial sums
    float* warp_sum_sq = shared + (blockDim.x / warpSize); // second half: partial sum of squares

    // Write warp-level results to shared memory
    if (lane == 0) {
        warp_sum[warpId] = sum;
        warp_sum_sq[warpId] = sum_sq;
    }
    __syncthreads();

    // Let first warp perform reduction over warp-level partial results
    float block_sum = 0.0f;
    float block_sum_sq = 0.0f;
    if (threadIdx.x < (blockDim.x / warpSize)) {
        block_sum = warp_sum[threadIdx.x];
        block_sum_sq = warp_sum_sq[threadIdx.x];
    }
    // Only threads in first warp participate in final reduction
    if (threadIdx.x < warpSize) {
        float val_sum = (threadIdx.x < (blockDim.x / warpSize)) ? block_sum : 0.0f;
        float val_sum_sq = (threadIdx.x < (blockDim.x / warpSize)) ? block_sum_sq : 0.0f;
        val_sum = warpReduceSum(val_sum);
        val_sum_sq = warpReduceSum(val_sum_sq);
        if (threadIdx.x == 0) {
            // Compute group mean and variance
            float group_mean = val_sum / group_size;
            float group_var = val_sum_sq / group_size - group_mean * group_mean;
            // Store these in shared memory for broadcast
            shared[0] = group_mean;
            shared[1] = group_var;
        }
    }
    __syncthreads();

    // Retrieve computed group mean and variance
    float group_mean = shared[0];
    float group_var = shared[1];
    float inv_std = 1.0f / sqrtf(group_var + eps);

    // Second pass: normalize each element and apply group normalization affine transform
    for (int i = threadIdx.x; i < group_size; i += blockDim.x) {
        int c_local = i / (H * W);
        int hw = i % (H * W);
        int c = group_channel_offset + c_local;
        int idx = sample_offset + c * (H * W) + hw;

        float v = y[idx];
        float normalized = (v - group_mean) * inv_std;
        float gamma = gn_weight[c];
        float beta = gn_bias[c];
        y[idx] = gamma * normalized + beta;
    }
}


// Launcher for the fused optimized warp kernel
void fused_optimized_warp_cuda(
    at::Tensor x,          // Input from conv2d
    at::Tensor bias,       // Bias for elementwise op
    at::Tensor scale,      // Scale for elementwise op
    at::Tensor y,          // Output tensor
    at::Tensor gn_weight,  // GroupNorm weight
    at::Tensor gn_bias,    // GroupNorm bias
    int64_t num_groups,
    bool bias_broadcast,
    bool scale_broadcast,
    float eps) {

    int N = x.size(0);
    int C = x.size(1);
    int H = x.size(2);
    int W = x.size(3);

    // Each block processes one group of one sample
    int total_blocks = N * num_groups;
    int threads = 256;  // Optimal thread count per block
    int warps_per_block = threads / 32;
    size_t shared_mem_size = 2 * warps_per_block * sizeof(float); // For warp-level reduction

    fused_optimized_warp_kernel<<<total_blocks, threads, shared_mem_size>>>(
        x.data_ptr<float>(),
        y.data_ptr<float>(),
        bias.data_ptr<float>(),
        scale.data_ptr<float>(),
        gn_weight.data_ptr<float>(),
        gn_bias.data_ptr<float>(),
        N, C, H, W,
        num_groups,
        bias_broadcast,
        scale_broadcast,
        eps);

    cudaError_t err = cudaGetLastError();
    if (err != cudaSuccess) {
        TORCH_CHECK(false, "CUDA kernel failed : ", cudaGetErrorString(err));
    }
}

// Forward function: applies convolution then the fused optimized warp kernel
at::Tensor module_fn_forward(
    at::Tensor x,
    at::Tensor conv_weight,
    at::Tensor conv_bias,
    at::Tensor bias,
    at::Tensor scale,
    at::Tensor gn_weight,
    at::Tensor gn_bias,
    int64_t num_groups) {

    CHECK_INPUT(x);
    CHECK_INPUT(conv_weight);
    if (conv_bias.defined()) CHECK_INPUT(conv_bias);
    CHECK_INPUT(bias);
    CHECK_INPUT(scale);
    CHECK_INPUT(gn_weight);
    CHECK_INPUT(gn_bias);

    // Perform convolution
    x = at::conv2d(x, conv_weight, conv_bias);

    // Prepare output tensor
    at::Tensor y = at::empty_like(x);

    bool bias_broadcast = (bias.numel() == 1);
    bool scale_broadcast = (scale.numel() == 1);
    float eps = 1e-5;

    fused_optimized_warp_cuda(x, bias, scale, y, gn_weight, gn_bias,
                              num_groups, bias_broadcast, scale_broadcast, eps);

    return y;
}

PYBIND11_MODULE(TORCH_EXTENSION_NAME, m) {
    m.def("forward", &module_fn_forward, "Fused optimized warp kernel (CUDA)");
}
Performance Metrics
Metric Value Unit Variance Samples
Executed Ipc Active 2.454 inst/cycle 0.000 5
Executed Ipc Elapsed 1.972 inst/cycle 0.000 5
Issue Slots Busy 61.518 % 0.271 5
Issued Ipc Active 2.462 inst/cycle 0.000 5
SM Busy 61.518 % 0.271 5
Memory Throughput 475392179057.796 byte/second 26896129338345553920.000 5
Mem Busy 22.658 % 0.059 5
Max Bandwidth 27.662 % 0.100 5
L1/TEX Hit Rate 65.524 % 0.001 5
L2 Hit Rate 70.538 % 0.000 5
Mem Pipes Busy 19.000 % 0.050 5
Warp Cycles Per Issued Instruction 19.686 cycle 0.013 5
Warp Cycles Per Executed Instruction 19.742 cycle 0.013 5
Avg. Active Threads Per Warp 31.140 0.000 5
Avg. Not Predicated Off Threads Per Warp 27.950 0.000 5
Max Active Clusters 0.000 cluster 0.000 5
Max Cluster Size 8.000 block 0.000 5
Overall GPU Occupancy 0.000 % 0.000 5
Cluster Occupancy 0.000 % 0.000 5
Block Limit SM 32.000 block 0.000 5
Block Limit Registers 8.000 block 0.000 5
Block Limit Shared Mem 28.000 block 0.000 5
Block Limit Warps 8.000 block 0.000 5
Theoretical Active Warps per SM 64.000 warp 0.000 5
Theoretical Occupancy 100.000 % 0.000 5
Achieved Occupancy 76.294 % 0.122 5
Achieved Active Warps Per SM 48.828 warp 0.050 5
Analysis Rules
Rule Description
INF HighPipeUtilization ALU is the highest-utilized pipeline (44.7%) based on active cycles, taking into account the rates of its different instructions. It executes integer and logic operations. It is well-utilized, but should not be a bottleneck.
WRN Occupancy This kernel's theoretical occupancy is not impacted by any block limit. The difference between calculated theoretical (100.0%) and measured achieved occupancy (76.0%) can be the result of warp scheduling overheads or workload imbalances during the kernel execution. Load imbalances can occur between warps within a block as well as across blocks of the same kernel. See the CUDA Best Practices Guide (https://docs.nvidia.com/cuda/cuda-c-best-practices-guide/index.html#occupancy) for more details on optimizing occupancy.
Operation / Metric Value Unit
aten::fill_
CPU Time 166063.80 μs
Device Time 1067315.88 μs
Self CPU Time 30689.10 μs
Self Device Time 1067315.88 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
aten::zero_
CPU Time 189262.90 μs
Device Time 1067315.88 μs
Self CPU Time 23232.21 μs
Self Device Time 0.00 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
aten::conv2d
CPU Time 1171241.12 μs
Device Time 380719.85 μs
Self CPU Time 22582.24 μs
Self Device Time 0.00 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
aten::convolution
CPU Time 1148658.88 μs
Device Time 380719.85 μs
Self CPU Time 27994.68 μs
Self Device Time 0.00 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
aten::_convolution
CPU Time 1120664.20 μs
Device Time 380719.85 μs
Self CPU Time 55387.62 μs
Self Device Time 0.00 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
aten::cudnn_convolution
CPU Time 933751.53 μs
Device Time 271647.75 μs
Self CPU Time 222948.83 μs
Self Device Time 271647.75 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
cudaLaunchKernel
CPU Time 954330.56 μs
Device Time 27619.95 μs
Self CPU Time 954330.56 μs
Self Device Time 27619.95 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
void at::native::vectorized_elementwise_kernel<4, at::native::FillFunctor<int>, at::detail::Array<char*, 1> >(int, at::native::FillFunctor<int>, at::detail::Array<char*, 1>)
CPU Time 0.00 μs
Device Time 1067315.88 μs
Self CPU Time 0.00 μs
Self Device Time 1067315.88 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
Status: Completed
45314 warnings generated when compiling for host.
Suppressed 45328 warnings (45281 in non-user code, 47 NOLINT).
Use -header-filter=.* to display errors from all non-system headers. Use -system-headers to display errors from system headers as well.
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_2/task_21/b8_s2_fused_optimized_warp/base/base.cu:7:35 bugprone-macro-parentheses
7 | #define CHECK_CUDA(x) TORCH_CHECK(x.is_cuda(), #x " must be a CUDA tensor.")
| ^
| ()
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_2/task_21/b8_s2_fused_optimized_warp/base/base.cu:8:41: warning: macro argument should be enclosed in parentheses [bugprone-macro-parentheses]
8 | #define CHECK_CONTIGUOUS(x) TORCH_CHECK(x.is_contiguous(), #x " must be contiguous.")
| ^
| ()
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_2/task_21/b8_s2_fused_optimized_warp/base/base.cu:25:5: warning: 4 adjacent parameters of 'fused_optimized_warp_kernel' of similar type ('const float *__restrict') are easily swapped by mistake [bugprone-easily-swappable-parameters]
25 | const float* __restrict__ bias, // Bias for elementwise op (broadcastable)
| ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
26 | const float* __restrict__ scale,// Scale for elementwise op (broadcastable)
| ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
27 | const float* __restrict__ gn_weight, // GroupNorm weight, shape [C]
| ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
28 | const float* __restrict__ gn_bias, // GroupNorm bias, shape [C]
| ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_2/task_21/b8_s2_fused_optimized_warp/base/base.cu:25:31: note: the first parameter in the range is 'bias'
25 | const float* __restrict__ bias, // Bias for elementwise op (broadcastable)
| ^~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_2/task_21/b8_s2_fused_optimized_warp/base/base.cu:28:31: note: the last parameter in the range is 'gn_bias'
28 | const float* __restrict__ gn_bias, // GroupNorm bias, shape [C]
| ^~~~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_2/task_21/b8_s2_fused_optimized_warp/base/base.cu:29:5: warning: 2 adjacent parameters of 'fused_optimized_warp_kernel' of similar type ('int') are easily swapped by mistake [bugprone-easily-swappable-parameters]
29 | int N, int C, int H, int W,
| ^~~~~~~~~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_2/task_21/b8_s2_fused_optimized_warp/base/base.cu:29:9: note: the first parameter in the range is 'N'
29 | int N, int C, int H, int W,
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_2/task_21/b8_s2_fused_optimized_warp/base/base.cu:29:16: note: the last parameter in the range is 'C'
29 | int N, int C, int H, int W,
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_2/task_21/b8_s2_fused_optimized_warp/base/base.cu:29:26: warning: 2 adjacent parameters of 'fused_optimized_warp_kernel' of similar type ('int') are easily swapped by mistake [bugprone-easily-swappable-parameters]
29 | int N, int C, int H, int W,
| ^~~~~~
30 | int num_groups,
| ~~~~~~~~~~~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_2/task_21/b8_s2_fused_optimized_warp/base/base.cu:29:30: note: the first parameter in the range is 'W'
29 | int N, int C, int H, int W,
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_2/task_21/b8_s2_fused_optimized_warp/base/base.cu:30:9: note: the last parameter in the range is 'num_groups'
30 | int num_groups,
| ^~~~~~~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_2/task_21/b8_s2_fused_optimized_warp/base/base.cu:36:21: warning: narrowing conversion from 'unsigned int' to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
36 | int group_idx = blockIdx.x % num_groups;
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_2/task_21/b8_s2_fused_optimized_warp/base/base.cu:37:22: warning: narrowing conversion from 'unsigned int' to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
37 | int sample_idx = blockIdx.x / num_groups;
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_2/task_21/b8_s2_fused_optimized_warp/base/base.cu:50:18: warning: narrowing conversion from 'unsigned int' to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
50 | for (int i = threadIdx.x; i < group_size; i += blockDim.x) {
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_2/task_21/b8_s2_fused_optimized_warp/base/base.cu:50:52: warning: narrowing conversion from 'unsigned int' to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
50 | for (int i = threadIdx.x; i < group_size; i += blockDim.x) {
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_2/task_21/b8_s2_fused_optimized_warp/base/base.cu:71:16: warning: narrowing conversion from 'unsigned int' to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
71 | int lane = threadIdx.x % warpSize; // lane index within the warp
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_2/task_21/b8_s2_fused_optimized_warp/base/base.cu:72:18: warning: narrowing conversion from 'unsigned int' to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
72 | int warpId = threadIdx.x / warpSize; // current warp index
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_2/task_21/b8_s2_fused_optimized_warp/base/base.cu:101:42: warning: narrowing conversion from 'int' to 'float' [bugprone-narrowing-conversions]
101 | float group_mean = val_sum / group_size;
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_2/task_21/b8_s2_fused_optimized_warp/base/base.cu:102:44: warning: narrowing conversion from 'int' to 'float' [bugprone-narrowing-conversions]
102 | float group_var = val_sum_sq / group_size - group_mean * group_mean;
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_2/task_21/b8_s2_fused_optimized_warp/base/base.cu:116:18: warning: narrowing conversion from 'unsigned int' to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
116 | for (int i = threadIdx.x; i < group_size; i += blockDim.x) {
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_2/task_21/b8_s2_fused_optimized_warp/base/base.cu:116:52: warning: narrowing conversion from 'unsigned int' to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
116 | for (int i = threadIdx.x; i < group_size; i += blockDim.x) {
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_2/task_21/b8_s2_fused_optimized_warp/base/base.cu:133:16: warning: the parameter 'x' is copied for each invocation but only used as a const reference; consider making it a const reference [performance-unnecessary-value-param]
133 | at::Tensor x, // Input from conv2d
| ^
| const &
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_2/task_21/b8_s2_fused_optimized_warp/base/base.cu:134:16: warning: the parameter 'bias' is copied for each invocation but only used as a const reference; consider making it a const reference [performance-unnecessary-value-param]
134 | at::Tensor bias, // Bias for elementwise op
| ^
| const &
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_2/task_21/b8_s2_fused_optimized_warp/base/base.cu:135:16: warning: the parameter 'scale' is copied for each invocation but only used as a const reference; consider making it a const reference [performance-unnecessary-value-param]
135 | at::Tensor scale, // Scale for elementwise op
| ^
| const &
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_2/task_21/b8_s2_fused_optimized_warp/base/base.cu:136:16: warning: the parameter 'y' is copied for each invocation but only used as a const reference; consider making it a const reference [performance-unnecessary-value-param]
136 | at::Tensor y, // Output tensor
| ^
| const &
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_2/task_21/b8_s2_fused_optimized_warp/base/base.cu:137:16: warning: the parameter 'gn_weight' is copied for each invocation but only used as a const reference; consider making it a const reference [performance-unnecessary-value-param]
137 | at::Tensor gn_weight, // GroupNorm weight
| ^
| const &
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_2/task_21/b8_s2_fused_optimized_warp/base/base.cu:138:16: warning: the parameter 'gn_bias' is copied for each invocation but only used as a const reference; consider making it a const reference [performance-unnecessary-value-param]
138 | at::Tensor gn_bias, // GroupNorm bias
| ^
| const &
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_2/task_21/b8_s2_fused_optimized_warp/base/base.cu:144:13: warning: narrowing conversion from 'int64_t' (aka 'long') to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
144 | int N = x.size(0);
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_2/task_21/b8_s2_fused_optimized_warp/base/base.cu:145:13: warning: narrowing conversion from 'int64_t' (aka 'long') to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
145 | int C = x.size(1);
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_2/task_21/b8_s2_fused_optimized_warp/base/base.cu:146:13: warning: narrowing conversion from 'int64_t' (aka 'long') to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
146 | int H = x.size(2);
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_2/task_21/b8_s2_fused_optimized_warp/base/base.cu:147:13: warning: narrowing conversion from 'int64_t' (aka 'long') to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
147 | int W = x.size(3);
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_2/task_21/b8_s2_fused_optimized_warp/base/base.cu:150:24: warning: narrowing conversion from 'int64_t' (aka 'long') to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
150 | int total_blocks = N * num_groups;
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_2/task_21/b8_s2_fused_optimized_warp/base/base.cu:153:30: warning: performing an implicit widening conversion to type 'unsigned long' of a multiplication performed in type 'int' [bugprone-implicit-widening-of-multiplication-result]
153 | size_t shared_mem_size = 2 * warps_per_block * sizeof(float); // For warp-level reduction
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_2/task_21/b8_s2_fused_optimized_warp/base/base.cu:153:30: note: make conversion explicit to silence this warning
6 | size_t shared_mem_size = 2 * warps_per_block * sizeof(float); // For warp-level reduction
| ^~~~~~~~~~~~~~~~~~~
| static_cast<unsigned long>( )
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_2/task_21/b8_s2_fused_optimized_warp/base/base.cu:153:30: note: perform multiplication in a wider type
153 | size_t shared_mem_size = 2 * warps_per_block * sizeof(float); // For warp-level reduction
| ^
| static_cast<long>( )
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_2/task_21/b8_s2_fused_optimized_warp/base/base.cu:163:9: warning: narrowing conversion from 'int64_t' (aka 'long') to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
163 | num_groups,
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_2/task_21/b8_s2_fused_optimized_warp/base/base.cu:177:16: warning: the parameter 'conv_weight' is copied for each invocation but only used as a const reference; consider making it a const reference [performance-unnecessary-value-param]
177 | at::Tensor conv_weight,
| ^
| const &
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_2/task_21/b8_s2_fused_optimized_warp/base/base.cu:179:16: warning: the parameter 'bias' is copied for each invocation but only used as a const reference; consider making it a const reference [performance-unnecessary-value-param]
179 | at::Tensor bias,
| ^
| const &
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_2/task_21/b8_s2_fused_optimized_warp/base/base.cu:180:16: warning: the parameter 'scale' is copied for each invocation but only used as a const reference; consider making it a const reference [performance-unnecessary-value-param]
180 | at::Tensor scale,
| ^
| const &
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_2/task_21/b8_s2_fused_optimized_warp/base/base.cu:181:16: warning: the parameter 'gn_weight' is copied for each invocation but only used as a const reference; consider making it a const reference [performance-unnecessary-value-param]
181 | at::Tensor gn_weight,
| ^
| const &
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_2/task_21/b8_s2_fused_optimized_warp/base/base.cu:182:16: warning: the parameter 'gn_bias' is copied for each invocation but only used as a const reference; consider making it a const reference [performance-unnecessary-value-param]
182 | at::Tensor gn_bias,
| ^
| const &