← Back to Leaderboard

The AI CUDA Engineer 👷

47_Conv3d_Mish_Tanhwarp_optimized_mish_tanh_base_base

Level 2 • Task 47
import torch
import torch.nn as nn
import torch.nn.functional as F


def module_fn(
    x: torch.Tensor,
    stride: int,
    padding: int,
    conv_weight: torch.Tensor,
    conv_bias: torch.Tensor,
) -> torch.Tensor:
    """
    Applies 3D convolution followed by Mish and Tanh activations.

    Args:
        x (torch.Tensor): Input tensor of shape (batch_size, in_channels, D, H, W)
        stride (int): Stride of the convolution
        padding (int): Padding of the convolution
        conv_weight (torch.Tensor): Convolution weight tensor of shape
            (out_channels, in_channels, kernel_size, kernel_size, kernel_size)
        conv_bias (torch.Tensor): Bias tensor for convolution of shape (out_channels)

    Returns:
        torch.Tensor: Output tensor after applying convolution, Mish and Tanh activations
    """
    x = F.conv3d(x, conv_weight, bias=conv_bias, stride=stride, padding=padding)
    x = F.mish(x)
    x = torch.tanh(x)
    return x


class Model(nn.Module):
    """
    Model that performs a 3D convolution, applies Mish activation, and then applies Tanh activation.
    """

    def __init__(self, in_channels, out_channels, kernel_size, stride, padding):
        super(Model, self).__init__()
        conv = nn.Conv3d(
            in_channels, out_channels, kernel_size, stride=stride, padding=padding
        )
        self.conv_weight = nn.Parameter(conv.weight)
        self.conv_bias = nn.Parameter(
            conv.bias
            + torch.randn(
                conv.bias.shape, device=conv.bias.device, dtype=conv.bias.dtype
            )
            * 0.02
        )

    def forward(self, x, stride, padding, fn=module_fn):
        return fn(x, stride, padding, self.conv_weight, self.conv_bias)


batch_size = 16
in_channels = 3
out_channels = 16
D, H, W = 16, 32, 32
kernel_size = 3
stride = 1
padding = 0


def get_inputs():
    return [torch.randn(batch_size, in_channels, D, H, W), stride, padding]


def get_init_inputs():
    return [in_channels, out_channels, kernel_size, stride, padding]
import torch
import torch.nn as nn

class Model(nn.Module):
    """
    Model that performs a 3D convolution, applies Mish activation, and then applies Tanh activation.
    """
    def __init__(self, in_channels, out_channels, kernel_size, stride=1, padding=0):
        super(Model, self).__init__()
        self.conv = nn.Conv3d(in_channels, out_channels, kernel_size, stride=stride, padding=padding)
        self.conv.bias = nn.Parameter(self.conv.bias + torch.randn(self.conv.bias.shape, device=self.conv.bias.device, dtype=self.conv.bias.dtype) * 0.02)

    def forward(self, x):
        """
        Args:
            x (torch.Tensor): Input tensor of shape (batch_size, in_channels, D, H, W).

        Returns:
            torch.Tensor: Output tensor of shape (batch_size, out_channels, D', H', W').
        """
        x = self.conv(x)
        x = torch.nn.functional.mish(x)
        x = torch.tanh(x)
        return x

batch_size = 16
in_channels = 3
out_channels = 16
D, H, W = 16, 32, 32
kernel_size = 3

def get_inputs():
    return [torch.randn(batch_size, in_channels, D, H, W)]

def get_init_inputs():
    return [in_channels, out_channels, kernel_size]

Kernel Information

Related Kernels (Level 2, Task 47 • 47_Conv3d_Mish_Tanh)

Rank Kernel Name Runtime (ms) Speedup Native Speedup Compile
🥇 optimized_fused_mish_tanh_base 0.10 1.09 0.95
🥇 shared_mem_mish_tanh_base_base 0.10 1.09 0.95
🥇 modular_fused_mish_tanh_base 0.10 1.09 0.95
4 aligned_ldg_mish_tanh_base 0.10 1.08 0.94
4 warp_optimized_mish_tanh_base_base 0.10 1.08 0.94
4 vec_nosync_mish_tanh_base 0.10 1.08 0.94
4 block_size_optimization_mish_tanh_base 0.10 1.08 0.94
4 efficient_mish_tanh_shared_memory_base 0.10 1.08 0.94
4 fused_shared_unrolled_base 0.10 1.08 0.94
4 optimized_block_mish_tanh_base 0.10 1.08 0.94
4 manual_loop_unroll_fused_mish_tanh_base 0.10 1.08 0.94
4 stride_loop_mish_tanh_base 0.10 1.08 0.94
13 warp_level_no_shared_base 0.10 1.06 0.93
13 coalesced_memory_access_optimized_base 0.10 1.06 0.93
13 47_conv3d_mish_tanh_inplace_vec4_edit_1 0.10 1.06 0.93
13 47_conv3d_mish_tanh_shared_mem_base 0.10 1.06 0.93
13 47_Conv3d_Mish_Tanh_aligned_edit_1 0.10 1.06 0.93
13 47_Conv3d_Mish_Tanh_modular_base 0.10 1.06 0.93
19 47_conv3d_mish_tanh_unrolled_base 0.10 1.05 0.92
19 47_conv3d_mish_tanh_shared_mem_edit_1 0.10 1.05 0.92
#include <torch/extension.h>
#include <cuda.h>
#include <cuda_runtime.h>
#include <vector>

// Warp size for NVIDIA GPUs
#define WARP_SIZE 32

__device__ __forceinline__ float fused_mish_tanh_activation(float x) {
    float softplus = logf(1.0f + expf(x));
    float mish = x * tanhf(softplus);
    return tanhf(mish);
}

__device__ __forceinline__ float4 load_float4(const float* addr) {
    float4 val;
    val = *reinterpret_cast<const float4*>(addr);
    return val;
}

__device__ __forceinline__ void store_float4(float* addr, float4 val) {
    *reinterpret_cast<float4*>(addr) = val;
}

__global__ void warp_optimized_mish_tanh_kernel(
    float* __restrict__ output,
    const float* __restrict__ input,
    const int total_elements
) {
    // Get warp and lane information
    const int warp_id = threadIdx.x / WARP_SIZE;
    const int lane_id = threadIdx.x % WARP_SIZE;
    const int warp_per_block = blockDim.x / WARP_SIZE;
    const int global_warp_id = blockIdx.x * warp_per_block + warp_id;
    
    // Calculate base index for this warp
    int base_idx = global_warp_id * (WARP_SIZE * 4); // Process 4 elements per thread
    
    // Process 4 elements per thread when possible
    if (base_idx + (WARP_SIZE * 4) <= total_elements) {
        float4 in_val4 = load_float4(input + base_idx + lane_id * 4);
        
        // Process each element
        float4 out_val4;
        out_val4.x = fused_mish_tanh_activation(in_val4.x);
        out_val4.y = fused_mish_tanh_activation(in_val4.y);
        out_val4.z = fused_mish_tanh_activation(in_val4.z);
        out_val4.w = fused_mish_tanh_activation(in_val4.w);
        
        // Store result
        store_float4(output + base_idx + lane_id * 4, out_val4);
    }
    else {
        // Handle remaining elements
        for (int i = base_idx + lane_id; i < total_elements; i += WARP_SIZE) {
            output[i] = fused_mish_tanh_activation(input[i]);
        }
    }
}

torch::Tensor module_fn_forward(
    torch::Tensor x,
    int64_t stride,
    int64_t padding,
    torch::Tensor conv_weight,
    torch::Tensor conv_bias
) {
    TORCH_CHECK(x.is_cuda(), "Input tensor x must be a CUDA tensor");
    TORCH_CHECK(conv_weight.is_cuda(), "Convolution weight must be a CUDA tensor");
    TORCH_CHECK(conv_bias.is_cuda(), "Convolution bias must be a CUDA tensor");

    auto x_conv = at::conv3d(
        x,
        conv_weight,
        conv_bias,
        {stride, stride, stride},
        {padding, padding, padding}
    );

    auto output = torch::empty_like(x_conv);
    const int total_elements = x_conv.numel();

    // Configure kernel launch parameters
    const int threads_per_block = 256; // Multiple of WARP_SIZE
    const int num_blocks = (total_elements + threads_per_block * 4 - 1) / (threads_per_block * 4);

    warp_optimized_mish_tanh_kernel<<<num_blocks, threads_per_block>>>(
        output.data_ptr<float>(),
        x_conv.data_ptr<float>(),
        total_elements
    );

    return output;
}

PYBIND11_MODULE(TORCH_EXTENSION_NAME, m) {
    m.def("forward", &module_fn_forward, "Warp optimized convolution with Mish and Tanh activations (CUDA)");
}
Performance Metrics
Metric Value Unit Variance Samples
Executed Ipc Active 2.826 inst/cycle 0.000 5
Executed Ipc Elapsed 2.284 inst/cycle 0.000 5
Issue Slots Busy 71.250 % 0.075 5
Issued Ipc Active 2.850 inst/cycle 0.000 5
SM Busy 71.250 % 0.075 5
Memory Throughput 1091418463681.024 byte/second 7086087547311440896.000 5
Mem Busy 28.090 % 0.005 5
Max Bandwidth 32.686 % 0.003 5
L1/TEX Hit Rate 0.000 % 0.000 5
L2 Hit Rate 50.684 % 0.012 5
Mem Pipes Busy 6.704 % 0.000 5
Warp Cycles Per Issued Instruction 18.402 cycle 0.014 5
Warp Cycles Per Executed Instruction 18.562 cycle 0.014 5
Avg. Active Threads Per Warp 20.890 0.000 5
Avg. Not Predicated Off Threads Per Warp 20.340 0.000 5
Max Active Clusters 0.000 cluster 0.000 5
Max Cluster Size 8.000 block 0.000 5
Overall GPU Occupancy 0.000 % 0.000 5
Cluster Occupancy 0.000 % 0.000 5
Block Limit SM 32.000 block 0.000 5
Block Limit Registers 16.000 block 0.000 5
Block Limit Shared Mem 32.000 block 0.000 5
Block Limit Warps 8.000 block 0.000 5
Theoretical Active Warps per SM 64.000 warp 0.000 5
Theoretical Occupancy 100.000 % 0.000 5
Achieved Occupancy 82.204 % 0.007 5
Achieved Active Warps Per SM 52.614 warp 0.003 5
Analysis Rules
Rule Description
INF HighPipeUtilization ALU is the highest-utilized pipeline (30.7%) based on active cycles, taking into account the rates of its different instructions. It executes integer and logic operations. It is well-utilized, but should not be a bottleneck.
WRN ThreadDivergence Instructions are executed in warps, which are groups of 32 threads. Optimal instruction throughput is achieved if all 32 threads of a warp execute the same instruction. The chosen launch configuration, early thread completion, and divergent flow control can significantly lower the number of active threads in a warp per cycle. This kernel achieves an average of 20.9 threads being active per cycle. This is further reduced to 20.3 threads per warp due to predication. The compiler may use predication to avoid an actual branch. Instead, all instructions are scheduled, but a per-thread condition code or predicate controls which threads execute the instructions. Try to avoid different execution paths within a warp when possible. In addition, ensure your kernel makes use of Independent Thread Scheduling, which allows a warp to reconverge after a data-dependent conditional block by explicitly calling __syncwarp().
WRN Occupancy This kernel's theoretical occupancy is not impacted by any block limit. The difference between calculated theoretical (100.0%) and measured achieved occupancy (82.2%) can be the result of warp scheduling overheads or workload imbalances during the kernel execution. Load imbalances can occur between warps within a block as well as across blocks of the same kernel. See the CUDA Best Practices Guide (https://docs.nvidia.com/cuda/cuda-c-best-practices-guide/index.html#occupancy) for more details on optimizing occupancy.
Operation / Metric Value Unit
aten::conv3d
CPU Time 1152920.08 μs
Device Time 1165156.11 μs
Self CPU Time 21817.89 μs
Self Device Time 0.00 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
aten::convolution
CPU Time 1131102.19 μs
Device Time 1165156.11 μs
Self CPU Time 27806.98 μs
Self Device Time 0.00 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
aten::_convolution
CPU Time 1103295.21 μs
Device Time 1165156.11 μs
Self CPU Time 54578.64 μs
Self Device Time 0.00 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
aten::cudnn_convolution
CPU Time 926882.77 μs
Device Time 1015011.63 μs
Self CPU Time 225778.87 μs
Self Device Time 1015011.63 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
sm80_xmma_fprop_implicit_gemm_indexed_f32f32_f32f32_f32_nchwkcrs_nchw_tilesize32x32x8_stage3_warpsize1x2x1_g1_ffma_aligna4_alignc4_execute_kernel__5x_cudnn
CPU Time 0.00 μs
Device Time 1015008.75 μs
Self CPU Time 0.00 μs
Self Device Time 1015008.75 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
cudaLaunchKernel
CPU Time 950518.98 μs
Device Time 40672.45 μs
Self CPU Time 950518.98 μs
Self Device Time 40672.45 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
Status: Completed
45287 warnings generated when compiling for host.
Suppressed 45325 warnings (45278 in non-user code, 47 NOLINT).
Use -header-filter=.* to display errors from all non-system headers. Use -system-headers to display errors from system headers as well.
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_2/task_47/b5_s3_warp_optimized_mish_tanh_base/base/base.cu:31:25 bugprone-narrowing-conversions
31 | const int warp_id = threadIdx.x / WARP_SIZE;
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_2/task_47/b5_s3_warp_optimized_mish_tanh_base/base/base.cu:32:25: warning: narrowing conversion from 'unsigned int' to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
32 | const int lane_id = threadIdx.x % WARP_SIZE;
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_2/task_47/b5_s3_warp_optimized_mish_tanh_base/base/base.cu:33:32: warning: narrowing conversion from 'unsigned int' to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
33 | const int warp_per_block = blockDim.x / WARP_SIZE;
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_2/task_47/b5_s3_warp_optimized_mish_tanh_base/base/base.cu:34:32: warning: narrowing conversion from 'unsigned int' to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
34 | const int global_warp_id = blockIdx.x * warp_per_block + warp_id;
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_2/task_47/b5_s3_warp_optimized_mish_tanh_base/base/base.cu:41:38: warning: result of multiplication in type 'int' is used as a pointer offset after an implicit widening conversion to type 'ptrdiff_t' [bugprone-implicit-widening-of-multiplication-result]
41 | float4 in_val4 = load_float4(input + base_idx + lane_id * 4);
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_2/task_47/b5_s3_warp_optimized_mish_tanh_base/base/base.cu:41:57: note: make conversion explicit to silence this warning
4 | float4 in_val4 = load_float4(input + base_idx + lane_id * 4);
| ^~~~~~~~~~~
| static_cast<ptrdiff_t>( )
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_2/task_47/b5_s3_warp_optimized_mish_tanh_base/base/base.cu:41:57: note: perform multiplication in a wider type
41 | float4 in_val4 = load_float4(input + base_idx + lane_id * 4);
| ^~~~~~~
| static_cast<ptrdiff_t>( )
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_2/task_47/b5_s3_warp_optimized_mish_tanh_base/base/base.cu:51:22: warning: result of multiplication in type 'int' is used as a pointer offset after an implicit widening conversion to type 'ptrdiff_t' [bugprone-implicit-widening-of-multiplication-result]
51 | store_float4(output + base_idx + lane_id * 4, out_val4);
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_2/task_47/b5_s3_warp_optimized_mish_tanh_base/base/base.cu:51:42: note: make conversion explicit to silence this warning
51 | store_float4(output + base_idx + lane_id * 4, out_val4);
| ^~~~~~~~~~~
| static_cast<ptrdiff_t>( )
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_2/task_47/b5_s3_warp_optimized_mish_tanh_base/base/base.cu:51:42: note: perform multiplication in a wider type
51 | store_float4(output + base_idx + lane_id * 4, out_val4);
| ^~~~~~~
| static_cast<ptrdiff_t>( )
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_2/task_47/b5_s3_warp_optimized_mish_tanh_base/base/base.cu:62:19: warning: the parameter 'x' is copied for each invocation but only used as a const reference; consider making it a const reference [performance-unnecessary-value-param]
62 | torch::Tensor x,
| ^
| const &
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_2/task_47/b5_s3_warp_optimized_mish_tanh_base/base/base.cu:65:19: warning: the parameter 'conv_weight' is copied for each invocation but only used as a const reference; consider making it a const reference [performance-unnecessary-value-param]
65 | torch::Tensor conv_weight,
| ^
| const &
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_2/task_47/b5_s3_warp_optimized_mish_tanh_base/base/base.cu:81:32: warning: narrowing conversion from 'int64_t' (aka 'long') to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
81 | const int total_elements = x_conv.numel();
| ^