← Back to Leaderboard

The AI CUDA Engineer 👷

47_Conv3d_Mish_Tanhcoalesced_memory_access_optimized_base

Level 2 • Task 47
import torch
import torch.nn as nn
import torch.nn.functional as F


def module_fn(
    x: torch.Tensor,
    stride: int,
    padding: int,
    conv_weight: torch.Tensor,
    conv_bias: torch.Tensor,
) -> torch.Tensor:
    """
    Applies 3D convolution followed by Mish and Tanh activations.

    Args:
        x (torch.Tensor): Input tensor of shape (batch_size, in_channels, D, H, W)
        stride (int): Stride of the convolution
        padding (int): Padding of the convolution
        conv_weight (torch.Tensor): Convolution weight tensor of shape
            (out_channels, in_channels, kernel_size, kernel_size, kernel_size)
        conv_bias (torch.Tensor): Bias tensor for convolution of shape (out_channels)

    Returns:
        torch.Tensor: Output tensor after applying convolution, Mish and Tanh activations
    """
    x = F.conv3d(x, conv_weight, bias=conv_bias, stride=stride, padding=padding)
    x = F.mish(x)
    x = torch.tanh(x)
    return x


class Model(nn.Module):
    """
    Model that performs a 3D convolution, applies Mish activation, and then applies Tanh activation.
    """

    def __init__(self, in_channels, out_channels, kernel_size, stride, padding):
        super(Model, self).__init__()
        conv = nn.Conv3d(
            in_channels, out_channels, kernel_size, stride=stride, padding=padding
        )
        self.conv_weight = nn.Parameter(conv.weight)
        self.conv_bias = nn.Parameter(
            conv.bias
            + torch.randn(
                conv.bias.shape, device=conv.bias.device, dtype=conv.bias.dtype
            )
            * 0.02
        )

    def forward(self, x, stride, padding, fn=module_fn):
        return fn(x, stride, padding, self.conv_weight, self.conv_bias)


batch_size = 16
in_channels = 3
out_channels = 16
D, H, W = 16, 32, 32
kernel_size = 3
stride = 1
padding = 0


def get_inputs():
    return [torch.randn(batch_size, in_channels, D, H, W), stride, padding]


def get_init_inputs():
    return [in_channels, out_channels, kernel_size, stride, padding]
import torch
import torch.nn as nn

class Model(nn.Module):
    """
    Model that performs a 3D convolution, applies Mish activation, and then applies Tanh activation.
    """
    def __init__(self, in_channels, out_channels, kernel_size, stride=1, padding=0):
        super(Model, self).__init__()
        self.conv = nn.Conv3d(in_channels, out_channels, kernel_size, stride=stride, padding=padding)
        self.conv.bias = nn.Parameter(self.conv.bias + torch.randn(self.conv.bias.shape, device=self.conv.bias.device, dtype=self.conv.bias.dtype) * 0.02)

    def forward(self, x):
        """
        Args:
            x (torch.Tensor): Input tensor of shape (batch_size, in_channels, D, H, W).

        Returns:
            torch.Tensor: Output tensor of shape (batch_size, out_channels, D', H', W').
        """
        x = self.conv(x)
        x = torch.nn.functional.mish(x)
        x = torch.tanh(x)
        return x

batch_size = 16
in_channels = 3
out_channels = 16
D, H, W = 16, 32, 32
kernel_size = 3

def get_inputs():
    return [torch.randn(batch_size, in_channels, D, H, W)]

def get_init_inputs():
    return [in_channels, out_channels, kernel_size]

Kernel Information

Related Kernels (Level 2, Task 47 • 47_Conv3d_Mish_Tanh)

Rank Kernel Name Runtime (ms) Speedup Native Speedup Compile
🥇 optimized_fused_mish_tanh_base 0.10 1.09 0.95
🥇 shared_mem_mish_tanh_base_base 0.10 1.09 0.95
🥇 modular_fused_mish_tanh_base 0.10 1.09 0.95
4 aligned_ldg_mish_tanh_base 0.10 1.08 0.94
4 warp_optimized_mish_tanh_base_base 0.10 1.08 0.94
4 vec_nosync_mish_tanh_base 0.10 1.08 0.94
4 block_size_optimization_mish_tanh_base 0.10 1.08 0.94
4 efficient_mish_tanh_shared_memory_base 0.10 1.08 0.94
4 fused_shared_unrolled_base 0.10 1.08 0.94
4 optimized_block_mish_tanh_base 0.10 1.08 0.94
4 manual_loop_unroll_fused_mish_tanh_base 0.10 1.08 0.94
4 stride_loop_mish_tanh_base 0.10 1.08 0.94
13 warp_level_no_shared_base 0.10 1.06 0.93
13 coalesced_memory_access_optimized_base 0.10 1.06 0.93
13 47_conv3d_mish_tanh_inplace_vec4_edit_1 0.10 1.06 0.93
13 47_conv3d_mish_tanh_shared_mem_base 0.10 1.06 0.93
13 47_Conv3d_Mish_Tanh_aligned_edit_1 0.10 1.06 0.93
13 47_Conv3d_Mish_Tanh_modular_base 0.10 1.06 0.93
19 47_conv3d_mish_tanh_unrolled_base 0.10 1.05 0.92
19 47_conv3d_mish_tanh_shared_mem_edit_1 0.10 1.05 0.92
#include <torch/extension.h>
#include <cuda.h>
#include <cuda_runtime.h>
#include <vector>

__device__ __forceinline__ float fused_mish_tanh_activation(float x) {
    float exp_x = expf(x);
    float softplus = logf(1.0f + exp_x);
    return tanhf(x * tanhf(softplus));
}

__global__ void coalesced_memory_kernel(
    float* __restrict__ output,
    const float* __restrict__ input,
    const int total_elements
) {
    const int idx = blockIdx.x * blockDim.x + threadIdx.x;
    const int stride = blockDim.x * gridDim.x;
    for (int i = idx; i < total_elements; i += stride) {
        const float in_val = __ldg(input + i);
        output[i] = fused_mish_tanh_activation(in_val);
    }
}

torch::Tensor module_fn_forward(
    torch::Tensor x,
    int64_t stride,
    int64_t padding,
    torch::Tensor conv_weight,
    torch::Tensor conv_bias
) {
    TORCH_CHECK(x.is_cuda(), "Input tensor x must be a CUDA tensor");
    TORCH_CHECK(conv_weight.is_cuda(), "Convolution weight must be a CUDA tensor");
    TORCH_CHECK(conv_bias.is_cuda(), "Convolution bias must be a CUDA tensor");

    // Perform 3D convolution
    auto x_conv = at::conv3d(
        x,
        conv_weight,
        conv_bias,
        {stride, stride, stride},
        {padding, padding, padding}
    );

    auto output = torch::empty_like(x_conv);
    const int total_elements = x_conv.numel();

    const int block_size = 256;
    const int num_blocks = (total_elements + block_size - 1) / block_size;

    coalesced_memory_kernel<<<num_blocks, block_size>>>(
        output.data_ptr<float>(),
        x_conv.data_ptr<float>(),
        total_elements
    );

    return output;
}

PYBIND11_MODULE(TORCH_EXTENSION_NAME, m) {
    m.def("forward", &module_fn_forward, "Coalesced memory access optimized Mish-Tanh module (CUDA)");
}
Performance Metrics
Metric Value Unit Variance Samples
Executed Ipc Active 2.676 inst/cycle 0.000 5
Executed Ipc Elapsed 2.276 inst/cycle 0.000 5
Issue Slots Busy 67.204 % 0.089 5
Issued Ipc Active 2.690 inst/cycle 0.000 5
SM Busy 67.204 % 0.089 5
Memory Throughput 825021931032.360 byte/second 15368861018721157120.000 5
Mem Busy 21.244 % 0.010 5
Max Bandwidth 24.676 % 0.012 5
L1/TEX Hit Rate 0.000 % 0.000 5
L2 Hit Rate 50.816 % 0.205 5
Mem Pipes Busy 18.926 % 0.010 5
Warp Cycles Per Issued Instruction 18.966 cycle 0.008 5
Warp Cycles Per Executed Instruction 19.046 cycle 0.008 5
Avg. Active Threads Per Warp 23.560 0.000 5
Avg. Not Predicated Off Threads Per Warp 22.370 0.000 5
Max Active Clusters 0.000 cluster 0.000 5
Max Cluster Size 8.000 block 0.000 5
Overall GPU Occupancy 0.000 % 0.000 5
Cluster Occupancy 0.000 % 0.000 5
Block Limit SM 32.000 block 0.000 5
Block Limit Registers 16.000 block 0.000 5
Block Limit Shared Mem 32.000 block 0.000 5
Block Limit Warps 8.000 block 0.000 5
Theoretical Active Warps per SM 64.000 warp 0.000 5
Theoretical Occupancy 100.000 % 0.000 5
Achieved Occupancy 80.954 % 0.012 5
Achieved Active Warps Per SM 51.810 warp 0.005 5
Analysis Rules
Rule Description
INF HighPipeUtilization ALU is the highest-utilized pipeline (28.9%) based on active cycles, taking into account the rates of its different instructions. It executes integer and logic operations. It is well-utilized, but should not be a bottleneck.
INF CPIStall Check the Warp Stall Sampling (All Cycles) table for the top stall locations in your source based on sampling data. The Kernel Profiling Guide (https://docs.nvidia.com/nsight-compute/ProfilingGuide/index.html#metrics-reference) provides more details on each stall reason.
WRN ThreadDivergence Instructions are executed in warps, which are groups of 32 threads. Optimal instruction throughput is achieved if all 32 threads of a warp execute the same instruction. The chosen launch configuration, early thread completion, and divergent flow control can significantly lower the number of active threads in a warp per cycle. This kernel achieves an average of 23.6 threads being active per cycle. This is further reduced to 22.4 threads per warp due to predication. The compiler may use predication to avoid an actual branch. Instead, all instructions are scheduled, but a per-thread condition code or predicate controls which threads execute the instructions. Try to avoid different execution paths within a warp when possible. In addition, ensure your kernel makes use of Independent Thread Scheduling, which allows a warp to reconverge after a data-dependent conditional block by explicitly calling __syncwarp().
WRN Occupancy This kernel's theoretical occupancy is not impacted by any block limit. The difference between calculated theoretical (100.0%) and measured achieved occupancy (81.0%) can be the result of warp scheduling overheads or workload imbalances during the kernel execution. Load imbalances can occur between warps within a block as well as across blocks of the same kernel. See the CUDA Best Practices Guide (https://docs.nvidia.com/cuda/cuda-c-best-practices-guide/index.html#occupancy) for more details on optimizing occupancy.
Operation / Metric Value Unit
aten::conv3d
CPU Time 1179186.62 μs
Device Time 1182630.64 μs
Self CPU Time 22724.24 μs
Self Device Time 0.00 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
aten::convolution
CPU Time 1156462.38 μs
Device Time 1182630.64 μs
Self CPU Time 30030.81 μs
Self Device Time 0.00 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
aten::_convolution
CPU Time 1126431.57 μs
Device Time 1182630.64 μs
Self CPU Time 57900.55 μs
Self Device Time 0.00 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
aten::cudnn_convolution
CPU Time 938716.10 μs
Device Time 1028626.27 μs
Self CPU Time 238061.63 μs
Self Device Time 1028626.27 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
sm80_xmma_fprop_implicit_gemm_indexed_f32f32_f32f32_f32_nchwkcrs_nchw_tilesize32x32x8_stage3_warpsize1x2x1_g1_ffma_aligna4_alignc4_execute_kernel__5x_cudnn
CPU Time 0.00 μs
Device Time 1028623.30 μs
Self CPU Time 0.00 μs
Self Device Time 1028623.30 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
cudaLaunchKernel
CPU Time 989058.56 μs
Device Time 41256.84 μs
Self CPU Time 989058.56 μs
Self Device Time 41256.84 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
Status: Completed
45283 warnings generated when compiling for host.
Suppressed 45325 warnings (45278 in non-user code, 47 NOLINT).
Use -header-filter=.* to display errors from all non-system headers. Use -system-headers to display errors from system headers as well.
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_2/task_47/b9_s3_coalesced_memory_access_optimized/base/base.cu:17:21 bugprone-narrowing-conversions
17 | const int idx = blockIdx.x * blockDim.x + threadIdx.x;
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_2/task_47/b9_s3_coalesced_memory_access_optimized/base/base.cu:18:24: warning: narrowing conversion from 'unsigned int' to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
18 | const int stride = blockDim.x * gridDim.x;
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_2/task_47/b9_s3_coalesced_memory_access_optimized/base/base.cu:26:19: warning: the parameter 'x' is copied for each invocation but only used as a const reference; consider making it a const reference [performance-unnecessary-value-param]
26 | torch::Tensor x,
| ^
| const &
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_2/task_47/b9_s3_coalesced_memory_access_optimized/base/base.cu:29:19: warning: the parameter 'conv_weight' is copied for each invocation but only used as a const reference; consider making it a const reference [performance-unnecessary-value-param]
29 | torch::Tensor conv_weight,
| ^
| const &
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_2/task_47/b9_s3_coalesced_memory_access_optimized/base/base.cu:46:32: warning: narrowing conversion from 'int64_t' (aka 'long') to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
46 | const int total_elements = x_conv.numel();
| ^