← Back to Leaderboard

The AI CUDA Engineer 👷

61_ConvTranspose3d_ReLU_GroupNormfused_rg_atomic_opt_base_base

Level 2 • Task 61
import torch
import torch.nn as nn
import torch.nn.functional as F


def module_fn(
    x: torch.Tensor,
    conv_transpose: torch.Tensor,
    group_norm_weight: torch.Tensor,
    group_norm_bias: torch.Tensor,
    groups: int,
    eps: float,
) -> torch.Tensor:
    """
    Applies a transposed 3D convolution, ReLU, and group normalization.

    Args:
        x (torch.Tensor): Input tensor of shape (batch_size, in_channels, D, H, W)
        conv_transpose (torch.Tensor): Transposed convolution weight tensor
        group_norm_weight (torch.Tensor): Weight tensor for group normalization
        group_norm_bias (torch.Tensor): Bias tensor for group normalization
        groups (int): Number of groups for group normalization
        eps (float): Epsilon for group normalization
    Returns:
        torch.Tensor: Output tensor of shape (batch_size, out_channels, D, H, W)
    """
    x = F.conv_transpose3d(x, conv_transpose, bias=None)
    x = F.relu(x)
    x = F.group_norm(x, groups, group_norm_weight, group_norm_bias, eps)
    return x


class Model(nn.Module):
    """
    Model that performs a transposed 3D convolution, applies ReLU, and then applies group normalization.
    """

    def __init__(self, in_channels, out_channels, kernel_size, groups, bias):
        super(Model, self).__init__()
        conv = nn.ConvTranspose3d(in_channels, out_channels, kernel_size)
        self.conv_transpose_parameter = conv.weight

        # set torch seed to 0
        torch.manual_seed(0)
        gn = nn.GroupNorm(num_groups=groups, num_channels=out_channels, eps=eps)
        self.group_norm_weight = nn.Parameter(
            gn.weight + torch.randn_like(gn.weight) * 0.02
        )
        self.group_norm_bias = nn.Parameter(gn.bias + torch.randn_like(gn.bias) * 0.02)

    def forward(self, x, fn=module_fn):
        return fn(
            x,
            self.conv_transpose_parameter,
            self.group_norm_weight,
            self.group_norm_bias,
            groups,
            eps,
        )


batch_size = 16
in_channels = 64
out_channels = 128
D, H, W = 8, 16, 16
kernel_size = 3
groups = 8
bias = False
eps = 1e-5


def get_inputs():
    return [torch.randn(batch_size, in_channels, D, H, W)]


def get_init_inputs():
    return [in_channels, out_channels, kernel_size, groups, bias]
import torch
import torch.nn as nn


class Model(nn.Module):
    """
    Model that performs a transposed 3D convolution, applies ReLU, and then applies group normalization.
    """

    def __init__(
        self, in_channels, out_channels, kernel_size, groups, bias=False, eps=1e-5
    ):
        super(Model, self).__init__()
        self.conv_transpose = nn.ConvTranspose3d(
            in_channels, out_channels, kernel_size, bias=bias
        )
        self.relu = nn.ReLU()
        # set torch seed to 0
        torch.manual_seed(0)
        self.group_norm = nn.GroupNorm(
            num_groups=groups, num_channels=out_channels, eps=eps
        )
        self.group_norm.weight = nn.Parameter(
            self.group_norm.weight + torch.randn_like(self.group_norm.weight) * 0.02
        )
        self.group_norm.bias = nn.Parameter(
            self.group_norm.bias + torch.randn_like(self.group_norm.bias) * 0.02
        )

    def forward(self, x):
        """
        Args:
            x (torch.Tensor): Input tensor of shape (batch_size, in_channels, D, H, W).

        Returns:
            torch.Tensor: Output tensor of shape (batch_size, out_channels, D, H, W).
        """
        x = self.conv_transpose(x)
        x = self.relu(x)
        x = self.group_norm(x)
        return x


batch_size = 16
in_channels = 64
out_channels = 128
D, H, W = 8, 16, 16
kernel_size = 3
groups = 8
bias = False


def get_inputs():
    return [torch.randn(batch_size, in_channels, D, H, W)]


def get_init_inputs():
    return [in_channels, out_channels, kernel_size, groups, bias]

Kernel Information

Related Kernels (Level 2, Task 61 • 61_ConvTranspose3d_ReLU_GroupNorm)

#include <pybind11/pybind11.h>
#include <torch/extension.h>
#include <cuda.h>
#include <cuda_runtime.h>

#define BLOCK_SIZE 256
#define WARP_SIZE 32
#define NUM_WARPS (BLOCK_SIZE / WARP_SIZE)

// Warp-level reduction function
__device__ __forceinline__ float warp_reduce_sum(float val) {
    #pragma unroll
    for (int offset = WARP_SIZE / 2; offset > 0; offset /= 2) {
        val += __shfl_down_sync(0xffffffff, val, offset);
    }
    return val;
}

__device__ __forceinline__ void warp_reduce(float& sum, float& sumsq) {
    sum = warp_reduce_sum(sum);
    sumsq = warp_reduce_sum(sumsq);
}

__global__ void fused_relu_groupnorm_atomic_opt_kernel(
    float* __restrict__ data,
    const float* __restrict__ gamma,
    const float* __restrict__ beta,
    int N, int C, int D, int H, int W,
    int G, float eps)
{
    __shared__ float s_warp_sum[NUM_WARPS];
    __shared__ float s_warp_sumsq[NUM_WARPS];
    __shared__ float s_mean, s_inv_std;

    const int n = blockIdx.x;
    const int g = blockIdx.y;
    const int tid = threadIdx.x;
    const int wid = tid / WARP_SIZE;
    const int lane = tid % WARP_SIZE;
    
    const int channels_per_group = C / G;
    const int c_start = g * channels_per_group;
    const int group_size = channels_per_group * D * H * W;
    const int group_offset = n * C * D * H * W + c_start * D * H * W;

    // Each thread processes multiple elements using vectorized loads
    float4 thread_sum4 = make_float4(0.f, 0.f, 0.f, 0.f);
    float thread_sum = 0.f;
    float thread_sumsq = 0.f;

    // Process elements in chunks of float4
    const int vec_size = 4;
    const int num_vectors = group_size / vec_size;
    const int vectors_per_thread = (num_vectors + BLOCK_SIZE - 1) / BLOCK_SIZE;

    float4* data4 = reinterpret_cast<float4*>(data + group_offset);
    
    #pragma unroll 4
    for (int i = 0; i < vectors_per_thread; i++) {
        const int idx = tid + i * BLOCK_SIZE;
        if (idx < num_vectors) {
            float4 val4 = data4[idx];
            
            // Apply ReLU and accumulate
            val4.x = fmaxf(val4.x, 0.f);
            val4.y = fmaxf(val4.y, 0.f);
            val4.z = fmaxf(val4.z, 0.f);
            val4.w = fmaxf(val4.w, 0.f);
            
            data4[idx] = val4;
            
            thread_sum4.x += val4.x;
            thread_sum4.y += val4.y;
            thread_sum4.z += val4.z;
            thread_sum4.w += val4.w;
            
            thread_sumsq += val4.x * val4.x + val4.y * val4.y + 
                          val4.z * val4.z + val4.w * val4.w;
        }
    }

    // Handle remaining elements
    const int remaining_start = num_vectors * vec_size;
    #pragma unroll 4
    for (int i = tid; i < group_size - remaining_start; i += BLOCK_SIZE) {
        const int idx = group_offset + remaining_start + i;
        float val = data[idx];
        val = fmaxf(val, 0.f);
        data[idx] = val;
        thread_sum += val;
        thread_sumsq += val * val;
    }

    // Combine vector and scalar sums
    float warp_sum = thread_sum4.x + thread_sum4.y + thread_sum4.z + thread_sum4.w + thread_sum;
    float warp_sumsq = thread_sumsq;

    // First level: warp-level reduction
    warp_reduce(warp_sum, warp_sumsq);

    // Store warp results
    if (lane == 0) {
        atomicAdd(&s_warp_sum[wid], warp_sum);
        atomicAdd(&s_warp_sumsq[wid], warp_sumsq);
    }
    __syncthreads();

    // Second level: reduce across warps
    if (wid == 0) {
        warp_sum = (lane < NUM_WARPS) ? s_warp_sum[lane] : 0.f;
        warp_sumsq = (lane < NUM_WARPS) ? s_warp_sumsq[lane] : 0.f;
        
        warp_reduce(warp_sum, warp_sumsq);

        if (lane == 0) {
            float mean = warp_sum / group_size;
            float variance = warp_sumsq / group_size - mean * mean;
            s_mean = mean;
            s_inv_std = rsqrtf(variance + eps);
        }
    }
    __syncthreads();

    // Normalize using the computed statistics
    const float mean = s_mean;
    const float inv_std = s_inv_std;

    #pragma unroll 4
    for (int i = 0; i < vectors_per_thread; i++) {
        const int idx = tid + i * BLOCK_SIZE;
        if (idx < num_vectors) {
            float4 val4 = data4[idx];
            const int base_idx = idx * vec_size;
            
            #pragma unroll
            for (int j = 0; j < 4; j++) {
                const int channel_idx = (base_idx + j) / (D * H * W);
                const int c = c_start + channel_idx;
                float* val_ptr = &((&val4.x)[j]);
                *val_ptr = (*val_ptr - mean) * inv_std;
                *val_ptr = *val_ptr * __ldg(&gamma[c]) + __ldg(&beta[c]);
            }
            
            data4[idx] = val4;
        }
    }

    // Handle remaining elements
    #pragma unroll 4
    for (int i = tid; i < group_size - remaining_start; i += BLOCK_SIZE) {
        const int idx = group_offset + remaining_start + i;
        const int channel_idx = (remaining_start + i) / (D * H * W);
        const int c = c_start + channel_idx;
        
        float val = data[idx];
        val = (val - mean) * inv_std;
        val = val * __ldg(&gamma[c]) + __ldg(&beta[c]);
        data[idx] = val;
    }
}

torch::Tensor forward(
    torch::Tensor x,
    torch::Tensor conv_transpose,
    torch::Tensor group_norm_weight,
    torch::Tensor group_norm_bias,
    int64_t groups,
    double eps) {

    auto y = at::conv_transpose3d(
        x,
        conv_transpose,
        /*bias=*/c10::nullopt,
        /*stride=*/{1, 1, 1},
        /*padding=*/{0, 0, 0},
        /*output_padding=*/{0, 0, 0},
        /*groups=*/1,
        /*dilation=*/{1, 1, 1}
    );

    int N = y.size(0);
    int C = y.size(1);
    int D = y.size(2);
    int H = y.size(3);
    int W = y.size(4);
    int G = groups;

    dim3 grid(N, G);
    dim3 block(BLOCK_SIZE);

    fused_relu_groupnorm_atomic_opt_kernel<<<grid, block>>>(
         y.data_ptr<float>(),
         group_norm_weight.data_ptr<float>(),
         group_norm_bias.data_ptr<float>(),
         N, C, D, H, W,
         G, static_cast<float>(eps)
    );

    return y;
}

PYBIND11_MODULE(TORCH_EXTENSION_NAME, m) {
    m.def("forward", &forward, "Fused ConvTranspose3D + ReLU + GroupNorm with optimized atomic operations (CUDA)");
}
Performance Metrics
Metric Value Unit Variance Samples
Executed Ipc Active 1.180 inst/cycle 0.000 5
Executed Ipc Elapsed 1.006 inst/cycle 0.000 5
Issue Slots Busy 29.466 % 0.001 5
Issued Ipc Active 1.180 inst/cycle 0.000 5
SM Busy 29.466 % 0.001 5
Memory Throughput 1281905580883.550 byte/second 45606237542697598976.000 5
Mem Busy 30.484 % 0.026 5
Max Bandwidth 41.772 % 0.053 5
L1/TEX Hit Rate 77.710 % 0.000 5
L2 Hit Rate 67.430 % 0.001 5
Mem Pipes Busy 9.304 % 0.002 5
Warp Cycles Per Issued Instruction 6.704 cycle 0.000 5
Warp Cycles Per Executed Instruction 6.710 cycle 0.000 5
Avg. Active Threads Per Warp 31.890 0.000 5
Avg. Not Predicated Off Threads Per Warp 27.740 0.000 5
Max Active Clusters 0.000 cluster 0.000 5
Max Cluster Size 8.000 block 0.000 5
Overall GPU Occupancy 0.000 % 0.000 5
Cluster Occupancy 0.000 % 0.000 5
Block Limit SM 32.000 block 0.000 5
Block Limit Registers 8.000 block 0.000 5
Block Limit Shared Mem 28.000 block 0.000 5
Block Limit Warps 8.000 block 0.000 5
Theoretical Active Warps per SM 64.000 warp 0.000 5
Theoretical Occupancy 100.000 % 0.000 5
Achieved Occupancy 12.342 % 0.000 5
Achieved Active Warps Per SM 7.900 warp 0.000 5
Analysis Rules
Rule Description
INF HighPipeUtilization ALU is the highest-utilized pipeline (25.3%) based on active cycles, taking into account the rates of its different instructions. It executes integer and logic operations. It is well-utilized, but should not be a bottleneck.
INF CPIStall Check the Warp Stall Sampling (All Cycles) table for the top stall locations in your source based on sampling data. The Kernel Profiling Guide (https://docs.nvidia.com/nsight-compute/ProfilingGuide/index.html#metrics-reference) provides more details on each stall reason.
WRN Occupancy This kernel's theoretical occupancy is not impacted by any block limit. The difference between calculated theoretical (100.0%) and measured achieved occupancy (12.3%) can be the result of warp scheduling overheads or workload imbalances during the kernel execution. Load imbalances can occur between warps within a block as well as across blocks of the same kernel. See the CUDA Best Practices Guide (https://docs.nvidia.com/cuda/cuda-c-best-practices-guide/index.html#occupancy) for more details on optimizing occupancy.
Operation / Metric Value Unit
aten::conv_transpose3d
CPU Time 1188565.53 μs
Device Time 1186774.44 μs
Self CPU Time 12099.75 μs
Self Device Time 0.00 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
aten::convolution
CPU Time 1176465.78 μs
Device Time 1186774.44 μs
Self CPU Time 18384.68 μs
Self Device Time 0.00 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
aten::_convolution
CPU Time 1158081.10 μs
Device Time 1186774.44 μs
Self CPU Time 19523.91 μs
Self Device Time 0.00 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
aten::cudnn_convolution_transpose
CPU Time 1138557.20 μs
Device Time 1186774.44 μs
Self CPU Time 200815.26 μs
Self Device Time 1186774.44 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
cudaEventRecord
CPU Time 745685.80 μs
Device Time 63903.46 μs
Self CPU Time 745685.80 μs
Self Device Time 63903.46 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
sm90_xmma_dgrad_implicit_gemm_f32f32_tf32f32_f32_nhwckrsc_nhwc_tilesize256x64x32_warpgroupsize1x1x1_g1_execute_segment_k_off_kernel__5x_cudnn
CPU Time 0.00 μs
Device Time 923625.63 μs
Self CPU Time 0.00 μs
Self Device Time 923625.63 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
Status: Completed
45295 warnings generated when compiling for host.
Suppressed 45323 warnings (45276 in non-user code, 47 NOLINT).
Use -header-filter=.* to display errors from all non-system headers. Use -system-headers to display errors from system headers as well.
/home/robert_sakana_ai/llm_cuda/experiments/20250204_optimize_b10_s4_e0_sweep/level_2/task_61/b10_s2_fused_rg_atomic_opt_base/base/base.cu:28:5 bugprone-easily-swappable-parameters
28 | int N, int C, int D, int H, int W,
| ^~~~~~~~~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250204_optimize_b10_s4_e0_sweep/level_2/task_61/b10_s2_fused_rg_atomic_opt_base/base/base.cu:28:9: note: the first parameter in the range is 'N'
28 | int N, int C, int D, int H, int W,
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250204_optimize_b10_s4_e0_sweep/level_2/task_61/b10_s2_fused_rg_atomic_opt_base/base/base.cu:28:16: note: the last parameter in the range is 'C'
28 | int N, int C, int D, int H, int W,
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250204_optimize_b10_s4_e0_sweep/level_2/task_61/b10_s2_fused_rg_atomic_opt_base/base/base.cu:28:33: warning: 3 adjacent parameters of 'fused_relu_groupnorm_atomic_opt_kernel' of convertible types are easily swapped by mistake [bugprone-easily-swappable-parameters]
28 | int N, int C, int D, int H, int W,
| ^~~~~~
29 | int G, float eps)
| ~~~~~~~~~~~~~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250204_optimize_b10_s4_e0_sweep/level_2/task_61/b10_s2_fused_rg_atomic_opt_base/base/base.cu:28:37: note: the first parameter in the range is 'W'
28 | int N, int C, int D, int H, int W,
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250204_optimize_b10_s4_e0_sweep/level_2/task_61/b10_s2_fused_rg_atomic_opt_base/base/base.cu:29:18: note: the last parameter in the range is 'eps'
29 | int G, float eps)
| ^~~
/home/robert_sakana_ai/llm_cuda/experiments/20250204_optimize_b10_s4_e0_sweep/level_2/task_61/b10_s2_fused_rg_atomic_opt_base/base/base.cu:29:12: note: 'int' and 'float' may be implicitly converted
29 | int G, float eps)
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250204_optimize_b10_s4_e0_sweep/level_2/task_61/b10_s2_fused_rg_atomic_opt_base/base/base.cu:35:19: warning: narrowing conversion from 'unsigned int' to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
35 | const int n = blockIdx.x;
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250204_optimize_b10_s4_e0_sweep/level_2/task_61/b10_s2_fused_rg_atomic_opt_base/base/base.cu:36:19: warning: narrowing conversion from 'unsigned int' to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
36 | const int g = blockIdx.y;
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250204_optimize_b10_s4_e0_sweep/level_2/task_61/b10_s2_fused_rg_atomic_opt_base/base/base.cu:37:21: warning: narrowing conversion from 'unsigned int' to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
37 | const int tid = threadIdx.x;
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250204_optimize_b10_s4_e0_sweep/level_2/task_61/b10_s2_fused_rg_atomic_opt_base/base/base.cu:116:37: warning: narrowing conversion from 'int' to 'float' [bugprone-narrowing-conversions]
116 | float mean = warp_sum / group_size;
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250204_optimize_b10_s4_e0_sweep/level_2/task_61/b10_s2_fused_rg_atomic_opt_base/base/base.cu:117:43: warning: narrowing conversion from 'int' to 'float' [bugprone-narrowing-conversions]
117 | float variance = warp_sumsq / group_size - mean * mean;
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250204_optimize_b10_s4_e0_sweep/level_2/task_61/b10_s2_fused_rg_atomic_opt_base/base/base.cu:163:19: warning: the parameter 'x' is copied for each invocation but only used as a const reference; consider making it a const reference [performance-unnecessary-value-param]
163 | torch::Tensor x,
| ^
| const &
/home/robert_sakana_ai/llm_cuda/experiments/20250204_optimize_b10_s4_e0_sweep/level_2/task_61/b10_s2_fused_rg_atomic_opt_base/base/base.cu:164:5: warning: 2 adjacent parameters of 'forward' of similar type ('torch::Tensor') are easily swapped by mistake [bugprone-easily-swappable-parameters]
164 | torch::Tensor conv_transpose,
| ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~
165 | torch::Tensor group_norm_weight,
| ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250204_optimize_b10_s4_e0_sweep/level_2/task_61/b10_s2_fused_rg_atomic_opt_base/base/base.cu:164:19: note: the first parameter in the range is 'conv_transpose'
164 | torch::Tensor conv_transpose,
| ^~~~~~~~~~~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250204_optimize_b10_s4_e0_sweep/level_2/task_61/b10_s2_fused_rg_atomic_opt_base/base/base.cu:165:19: note: the last parameter in the range is 'group_norm_weight'
165 | torch::Tensor group_norm_weight,
| ^~~~~~~~~~~~~~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250204_optimize_b10_s4_e0_sweep/level_2/task_61/b10_s2_fused_rg_atomic_opt_base/base/base.cu:164:19: warning: the parameter 'conv_transpose' is copied for each invocation but only used as a const reference; consider making it a const reference [performance-unnecessary-value-param]
164 | torch::Tensor conv_transpose,
| ^
| const &
/home/robert_sakana_ai/llm_cuda/experiments/20250204_optimize_b10_s4_e0_sweep/level_2/task_61/b10_s2_fused_rg_atomic_opt_base/base/base.cu:165:19: warning: the parameter 'group_norm_weight' is copied for each invocation but only used as a const reference; consider making it a const reference [performance-unnecessary-value-param]
165 | torch::Tensor group_norm_weight,
| ^
| const &
/home/robert_sakana_ai/llm_cuda/experiments/20250204_optimize_b10_s4_e0_sweep/level_2/task_61/b10_s2_fused_rg_atomic_opt_base/base/base.cu:166:19: warning: the parameter 'group_norm_bias' is copied for each invocation but only used as a const reference; consider making it a const reference [performance-unnecessary-value-param]
166 | torch::Tensor group_norm_bias,
| ^
| const &
/home/robert_sakana_ai/llm_cuda/experiments/20250204_optimize_b10_s4_e0_sweep/level_2/task_61/b10_s2_fused_rg_atomic_opt_base/base/base.cu:167:5: warning: 2 adjacent parameters of 'forward' of convertible types are easily swapped by mistake [bugprone-easily-swappable-parameters]
167 | int64_t groups,
| ^~~~~~~~~~~~~~~
168 | double eps) {
| ~~~~~~~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250204_optimize_b10_s4_e0_sweep/level_2/task_61/b10_s2_fused_rg_atomic_opt_base/base/base.cu:167:13: note: the first parameter in the range is 'groups'
167 | int64_t groups,
| ^~~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250204_optimize_b10_s4_e0_sweep/level_2/task_61/b10_s2_fused_rg_atomic_opt_base/base/base.cu:168:12: note: the last parameter in the range is 'eps'
168 | double eps) {
| ^~~
/home/robert_sakana_ai/llm_cuda/experiments/20250204_optimize_b10_s4_e0_sweep/level_2/task_61/b10_s2_fused_rg_atomic_opt_base/base/base.cu:167:5: note:
167 | int64_t groups,
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250204_optimize_b10_s4_e0_sweep/level_2/task_61/b10_s2_fused_rg_atomic_opt_base/base/base.cu:168:5: note: 'int64_t' and 'double' may be implicitly converted: 'int64_t' (as 'long') -> 'double', 'double' -> 'int64_t' (as 'long')
168 | double eps) {
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250204_optimize_b10_s4_e0_sweep/level_2/task_61/b10_s2_fused_rg_atomic_opt_base/base/base.cu:181:13: warning: narrowing conversion from 'int64_t' (aka 'long') to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
181 | int N = y.size(0);
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250204_optimize_b10_s4_e0_sweep/level_2/task_61/b10_s2_fused_rg_atomic_opt_base/base/base.cu:182:13: warning: narrowing conversion from 'int64_t' (aka 'long') to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
182 | int C = y.size(1);
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250204_optimize_b10_s4_e0_sweep/level_2/task_61/b10_s2_fused_rg_atomic_opt_base/base/base.cu:183:13: warning: narrowing conversion from 'int64_t' (aka 'long') to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
183 | int D = y.size(2);
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250204_optimize_b10_s4_e0_sweep/level_2/task_61/b10_s2_fused_rg_atomic_opt_base/base/base.cu:184:13: warning: narrowing conversion from 'int64_t' (aka 'long') to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
184 | int H = y.size(3);
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250204_optimize_b10_s4_e0_sweep/level_2/task_61/b10_s2_fused_rg_atomic_opt_base/base/base.cu:185:13: warning: narrowing conversion from 'int64_t' (aka 'long') to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
185 | int W = y.size(4);
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250204_optimize_b10_s4_e0_sweep/level_2/task_61/b10_s2_fused_rg_atomic_opt_base/base/base.cu:186:13: warning: narrowing conversion from 'int64_t' (aka 'long') to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
186 | int G = groups;
| ^