← Back to Leaderboard

The AI CUDA Engineer 👷

61_ConvTranspose3d_ReLU_GroupNormfused_rg_const_base_base

Level 2 • Task 61
import torch
import torch.nn as nn
import torch.nn.functional as F


def module_fn(
    x: torch.Tensor,
    conv_transpose: torch.Tensor,
    group_norm_weight: torch.Tensor,
    group_norm_bias: torch.Tensor,
    groups: int,
    eps: float,
) -> torch.Tensor:
    """
    Applies a transposed 3D convolution, ReLU, and group normalization.

    Args:
        x (torch.Tensor): Input tensor of shape (batch_size, in_channels, D, H, W)
        conv_transpose (torch.Tensor): Transposed convolution weight tensor
        group_norm_weight (torch.Tensor): Weight tensor for group normalization
        group_norm_bias (torch.Tensor): Bias tensor for group normalization
        groups (int): Number of groups for group normalization
        eps (float): Epsilon for group normalization
    Returns:
        torch.Tensor: Output tensor of shape (batch_size, out_channels, D, H, W)
    """
    x = F.conv_transpose3d(x, conv_transpose, bias=None)
    x = F.relu(x)
    x = F.group_norm(x, groups, group_norm_weight, group_norm_bias, eps)
    return x


class Model(nn.Module):
    """
    Model that performs a transposed 3D convolution, applies ReLU, and then applies group normalization.
    """

    def __init__(self, in_channels, out_channels, kernel_size, groups, bias):
        super(Model, self).__init__()
        conv = nn.ConvTranspose3d(in_channels, out_channels, kernel_size)
        self.conv_transpose_parameter = conv.weight

        # set torch seed to 0
        torch.manual_seed(0)
        gn = nn.GroupNorm(num_groups=groups, num_channels=out_channels, eps=eps)
        self.group_norm_weight = nn.Parameter(
            gn.weight + torch.randn_like(gn.weight) * 0.02
        )
        self.group_norm_bias = nn.Parameter(gn.bias + torch.randn_like(gn.bias) * 0.02)

    def forward(self, x, fn=module_fn):
        return fn(
            x,
            self.conv_transpose_parameter,
            self.group_norm_weight,
            self.group_norm_bias,
            groups,
            eps,
        )


batch_size = 16
in_channels = 64
out_channels = 128
D, H, W = 8, 16, 16
kernel_size = 3
groups = 8
bias = False
eps = 1e-5


def get_inputs():
    return [torch.randn(batch_size, in_channels, D, H, W)]


def get_init_inputs():
    return [in_channels, out_channels, kernel_size, groups, bias]
import torch
import torch.nn as nn


class Model(nn.Module):
    """
    Model that performs a transposed 3D convolution, applies ReLU, and then applies group normalization.
    """

    def __init__(
        self, in_channels, out_channels, kernel_size, groups, bias=False, eps=1e-5
    ):
        super(Model, self).__init__()
        self.conv_transpose = nn.ConvTranspose3d(
            in_channels, out_channels, kernel_size, bias=bias
        )
        self.relu = nn.ReLU()
        # set torch seed to 0
        torch.manual_seed(0)
        self.group_norm = nn.GroupNorm(
            num_groups=groups, num_channels=out_channels, eps=eps
        )
        self.group_norm.weight = nn.Parameter(
            self.group_norm.weight + torch.randn_like(self.group_norm.weight) * 0.02
        )
        self.group_norm.bias = nn.Parameter(
            self.group_norm.bias + torch.randn_like(self.group_norm.bias) * 0.02
        )

    def forward(self, x):
        """
        Args:
            x (torch.Tensor): Input tensor of shape (batch_size, in_channels, D, H, W).

        Returns:
            torch.Tensor: Output tensor of shape (batch_size, out_channels, D, H, W).
        """
        x = self.conv_transpose(x)
        x = self.relu(x)
        x = self.group_norm(x)
        return x


batch_size = 16
in_channels = 64
out_channels = 128
D, H, W = 8, 16, 16
kernel_size = 3
groups = 8
bias = False


def get_inputs():
    return [torch.randn(batch_size, in_channels, D, H, W)]


def get_init_inputs():
    return [in_channels, out_channels, kernel_size, groups, bias]

Kernel Information

Related Kernels (Level 2, Task 61 • 61_ConvTranspose3d_ReLU_GroupNorm)

#include <pybind11/pybind11.h>
#include <torch/extension.h>
#include <cuda.h>
#include <cuda_runtime.h>

#define BLOCK_SIZE 256
#define WARP_SIZE 32
#define MAX_CHANNELS 4096  // Maximum number of channels stored in constant memory

// Declare constant memory arrays for GroupNorm parameters (gamma and beta)
__constant__ float c_gamma[MAX_CHANNELS];
__constant__ float c_beta[MAX_CHANNELS];

// Kernel: Fused ConvTranspose3D, ReLU, and GroupNorm with constant memory for gamma and beta
// Data layout: [N, C, D, H, W]
__global__ void fused_relu_groupnorm_const_kernel(
    float* __restrict__ data,   // input/output tensor
    int N, int C, int D, int H, int W,
    int G, float eps)           // number of groups and epsilon
{
    // Each block processes one (sample, group) pair
    int n = blockIdx.x;        // sample index
    int g = blockIdx.y;        // group index
    int channels_per_group = C / G;
    int c_start = g * channels_per_group;

    int spatial_size = D * H * W;
    int group_elems = channels_per_group * spatial_size;
    int tid = threadIdx.x;

    // Use vectorized loads for data processing (float4 for 128-bit loads)
    int aligned_elements = (group_elems / 4) * 4;

    float4 local_sum4 = make_float4(0.f, 0.f, 0.f, 0.f);
    float local_sum = 0.f;
    float local_sumsq = 0.f;

    // Process aligned elements in chunks of 4
    for (int i = tid * 4; i < aligned_elements; i += blockDim.x * 4) {
        int base_idx = n * (C * spatial_size) + (c_start * spatial_size) + i;
        float4 data4;
        // Load 4 elements
        data4.x = data[base_idx];
        data4.y = data[base_idx + 1];
        data4.z = data[base_idx + 2];
        data4.w = data[base_idx + 3];

        // Apply branchless ReLU
        data4.x = fmaxf(data4.x, 0.f);
        data4.y = fmaxf(data4.y, 0.f);
        data4.z = fmaxf(data4.z, 0.f);
        data4.w = fmaxf(data4.w, 0.f);

        // Write back activated values
        data[base_idx]     = data4.x;
        data[base_idx + 1] = data4.y;
        data[base_idx + 2] = data4.z;
        data[base_idx + 3] = data4.w;

        // Accumulate local sums for mean and variance computation
        local_sum4.x += data4.x;
        local_sum4.y += data4.y;
        local_sum4.z += data4.z;
        local_sum4.w += data4.w;

        local_sumsq += data4.x * data4.x + data4.y * data4.y +
                      data4.z * data4.z + data4.w * data4.w;
    }

    // Process remaining elements
    for (int i = aligned_elements + tid; i < group_elems; i += blockDim.x) {
        int base_idx = n * (C * spatial_size) + (c_start * spatial_size) + i;
        float val = data[base_idx];
        val = fmaxf(val, 0.f);
        data[base_idx] = val;
        local_sum += val;
        local_sumsq += val * val;
    }

    // Combine vectorized accumulations
    local_sum += local_sum4.x + local_sum4.y + local_sum4.z + local_sum4.w;

    // Warp-level reduction using shuffle intrinsics
    unsigned int mask = 0xffffffff;
    int lane = tid & (WARP_SIZE - 1);
    for (int offset = WARP_SIZE / 2; offset > 0; offset /= 2) {
        local_sum  += __shfl_down_sync(mask, local_sum, offset);
        local_sumsq += __shfl_down_sync(mask, local_sumsq, offset);
    }

    // Use shared memory to aggregate warp-level results
    __shared__ float s_sum[WARP_SIZE];
    __shared__ float s_sumsq[WARP_SIZE];
    int warp_id = tid / WARP_SIZE;
    if (lane == 0) {
        s_sum[warp_id] = local_sum;
        s_sumsq[warp_id] = local_sumsq;
    }
    __syncthreads();

    float group_sum = 0.f;
    float group_sumsq = 0.f;
    if (tid == 0) {
        int num_warps = (BLOCK_SIZE + WARP_SIZE - 1) / WARP_SIZE;
        for (int i = 0; i < num_warps; i++) {
            group_sum += s_sum[i];
            group_sumsq += s_sumsq[i];
        }
        float group_mean = group_sum / group_elems;
        float var = group_sumsq / group_elems - group_mean * group_mean;
        float inv_std = rsqrtf(var + eps);
        s_sum[0] = group_mean;
        s_sumsq[0] = inv_std;
    }
    __syncthreads();

    float group_mean = s_sum[0];
    float inv_std = s_sumsq[0];

    // Second pass: Normalize the data using computed statistics and constant memory parameters
    for (int i = tid; i < group_elems; i += blockDim.x) {
        int channel_offset = i / spatial_size;
        int c = c_start + channel_offset;
        int base_idx = n * (C * spatial_size) + (c_start * spatial_size) + i;
        float val = data[base_idx];
        val = (val - group_mean) * inv_std;
        // Retrieve gamma and beta from constant memory
        float gamma_val = c_gamma[c];
        float beta_val  = c_beta[c];
        val = val * gamma_val + beta_val;
        data[base_idx] = val;
    }
}

// Forward function: applies ConvTranspose3d then launches the fused CUDA kernel
// Copies GroupNorm parameters to constant memory before kernel launch

torch::Tensor forward(
    torch::Tensor x,
    torch::Tensor conv_transpose,
    torch::Tensor group_norm_weight,
    torch::Tensor group_norm_bias,
    int64_t groups,
    double eps) {

    // Perform 3D transposed convolution using ATen
    auto y = at::conv_transpose3d(
        x,
        conv_transpose,
        /*bias=*/c10::nullopt,
        /*stride=*/{1, 1, 1},
        /*padding=*/{0, 0, 0},
        /*output_padding=*/{0, 0, 0},
        /*groups=*/1,
        /*dilation=*/{1, 1, 1}
    );

    int N = y.size(0);
    int C = y.size(1);
    int D = y.size(2);
    int H = y.size(3);
    int W = y.size(4);
    int G = groups;

    // Copy GroupNorm parameters to constant memory (ensure C does not exceed MAX_CHANNELS)
    cudaMemcpyToSymbol(c_gamma, group_norm_weight.data_ptr<float>(), C * sizeof(float));
    cudaMemcpyToSymbol(c_beta, group_norm_bias.data_ptr<float>(), C * sizeof(float));

    dim3 grid(N, G);
    dim3 block(BLOCK_SIZE);

    fused_relu_groupnorm_const_kernel<<<grid, block>>>(
         y.data_ptr<float>(),
         N, C, D, H, W,
         G, static_cast<float>(eps)
    );

    cudaDeviceSynchronize();
    return y;
}

PYBIND11_MODULE(TORCH_EXTENSION_NAME, m) {
    m.def("forward", &forward, "Fused ConvTranspose3D + ReLU + GroupNorm with constant memory (CUDA)");
}
Performance Metrics
Metric Value Unit Variance Samples
Executed Ipc Active 0.788 inst/cycle 0.000 5
Executed Ipc Elapsed 0.684 inst/cycle 0.000 5
Issue Slots Busy 19.644 % 0.002 5
Issued Ipc Active 0.788 inst/cycle 0.000 5
SM Busy 21.648 % 0.003 5
Memory Throughput 729817056269.496 byte/second 12062040277117696000.000 5
Mem Busy 21.340 % 0.005 5
Max Bandwidth 26.588 % 0.006 5
L1/TEX Hit Rate 89.740 % 0.000 5
L2 Hit Rate 67.416 % 0.001 5
Mem Pipes Busy 7.974 % 0.001 5
Warp Cycles Per Issued Instruction 10.150 cycle 0.001 5
Warp Cycles Per Executed Instruction 10.166 cycle 0.001 5
Avg. Active Threads Per Warp 31.930 0.000 5
Avg. Not Predicated Off Threads Per Warp 28.360 0.000 5
Max Active Clusters 0.000 cluster 0.000 5
Max Cluster Size 8.000 block 0.000 5
Overall GPU Occupancy 0.000 % 0.000 5
Cluster Occupancy 0.000 % 0.000 5
Block Limit SM 32.000 block 0.000 5
Block Limit Registers 8.000 block 0.000 5
Block Limit Shared Mem 25.000 block 0.000 5
Block Limit Warps 8.000 block 0.000 5
Theoretical Active Warps per SM 64.000 warp 0.000 5
Theoretical Occupancy 100.000 % 0.000 5
Achieved Occupancy 12.470 % 0.000 5
Achieved Active Warps Per SM 7.980 warp 0.000 5
Analysis Rules
Rule Description
INF HighPipeUtilization ALU is the highest-utilized pipeline (21.7%) based on active cycles, taking into account the rates of its different instructions. It executes integer and logic operations. It is well-utilized, but should not be a bottleneck.
INF CPIStall Check the Warp Stall Sampling (All Cycles) table for the top stall locations in your source based on sampling data. The Kernel Profiling Guide (https://docs.nvidia.com/nsight-compute/ProfilingGuide/index.html#metrics-reference) provides more details on each stall reason.
WRN Occupancy This kernel's theoretical occupancy is not impacted by any block limit. The difference between calculated theoretical (100.0%) and measured achieved occupancy (12.5%) can be the result of warp scheduling overheads or workload imbalances during the kernel execution. Load imbalances can occur between warps within a block as well as across blocks of the same kernel. See the CUDA Best Practices Guide (https://docs.nvidia.com/cuda/cuda-c-best-practices-guide/index.html#occupancy) for more details on optimizing occupancy.
Operation / Metric Value Unit
aten::to
CPU Time 827292.17 μs
Device Time 820.98 μs
Self CPU Time 60.95 μs
Self Device Time 0.00 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
aten::_to_copy
CPU Time 827231.22 μs
Device Time 820.98 μs
Self CPU Time 120.13 μs
Self Device Time 0.00 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
aten::empty_strided
CPU Time 825886.15 μs
Device Time 0.00 μs
Self CPU Time 133.57 μs
Self Device Time 0.00 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
cudaDeviceGetStreamPriorityRange
CPU Time 821612.57 μs
Device Time 0.00 μs
Self CPU Time 821612.57 μs
Self Device Time 0.00 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
aten::conv_transpose3d
CPU Time 435446.21 μs
Device Time 1040062.47 μs
Self CPU Time 10279.20 μs
Self Device Time 0.00 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
aten::convolution
CPU Time 425167.02 μs
Device Time 1040062.47 μs
Self CPU Time 17303.17 μs
Self Device Time 0.00 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
aten::_convolution
CPU Time 407863.84 μs
Device Time 1040062.47 μs
Self CPU Time 16875.64 μs
Self Device Time 0.00 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
aten::cudnn_convolution_transpose
CPU Time 390988.20 μs
Device Time 1040062.47 μs
Self CPU Time 192811.60 μs
Self Device Time 1040062.47 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
sm90_xmma_dgrad_implicit_gemm_f32f32_tf32f32_f32_nhwckrsc_nhwc_tilesize256x64x32_warpgroupsize1x1x1_g1_execute_segment_k_off_kernel__5x_cudnn
CPU Time 0.00 μs
Device Time 811966.52 μs
Self CPU Time 0.00 μs
Self Device Time 811966.52 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
cudaDeviceSynchronize
CPU Time 1592616.15 μs
Device Time 54241.37 μs
Self CPU Time 1592616.15 μs
Self Device Time 54241.37 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
Status: Completed
45298 warnings generated when compiling for host.
Suppressed 45323 warnings (45276 in non-user code, 47 NOLINT).
Use -header-filter=.* to display errors from all non-system headers. Use -system-headers to display errors from system headers as well.
/home/robert_sakana_ai/llm_cuda/experiments/20250204_optimize_b10_s4_e0_sweep/level_2/task_61/b6_s0_fused_rg_const_base/base/base.cu:18:5 bugprone-easily-swappable-parameters
18 | int N, int C, int D, int H, int W,
| ^~~~~~~~~~~~~~~~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250204_optimize_b10_s4_e0_sweep/level_2/task_61/b6_s0_fused_rg_const_base/base/base.cu:18:9: note: the first parameter in the range is 'N'
18 | int N, int C, int D, int H, int W,
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250204_optimize_b10_s4_e0_sweep/level_2/task_61/b6_s0_fused_rg_const_base/base/base.cu:18:23: note: the last parameter in the range is 'D'
18 | int N, int C, int D, int H, int W,
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250204_optimize_b10_s4_e0_sweep/level_2/task_61/b6_s0_fused_rg_const_base/base/base.cu:18:33: warning: 3 adjacent parameters of 'fused_relu_groupnorm_const_kernel' of convertible types are easily swapped by mistake [bugprone-easily-swappable-parameters]
18 | int N, int C, int D, int H, int W,
| ^~~~~~
19 | int G, float eps) // number of groups and epsilon
| ~~~~~~~~~~~~~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250204_optimize_b10_s4_e0_sweep/level_2/task_61/b6_s0_fused_rg_const_base/base/base.cu:18:37: note: the first parameter in the range is 'W'
18 | int N, int C, int D, int H, int W,
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250204_optimize_b10_s4_e0_sweep/level_2/task_61/b6_s0_fused_rg_const_base/base/base.cu:19:18: note: the last parameter in the range is 'eps'
19 | int G, float eps) // number of groups and epsilon
| ^~~
/home/robert_sakana_ai/llm_cuda/experiments/20250204_optimize_b10_s4_e0_sweep/level_2/task_61/b6_s0_fused_rg_const_base/base/base.cu:19:12: note: 'int' and 'float' may be implicitly converted
19 | int G, float eps) // number of groups and epsilon
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250204_optimize_b10_s4_e0_sweep/level_2/task_61/b6_s0_fused_rg_const_base/base/base.cu:22:13: warning: narrowing conversion from 'unsigned int' to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
22 | int n = blockIdx.x; // sample index
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250204_optimize_b10_s4_e0_sweep/level_2/task_61/b6_s0_fused_rg_const_base/base/base.cu:23:13: warning: narrowing conversion from 'unsigned int' to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
23 | int g = blockIdx.y; // group index
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250204_optimize_b10_s4_e0_sweep/level_2/task_61/b6_s0_fused_rg_const_base/base/base.cu:29:15: warning: narrowing conversion from 'unsigned int' to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
29 | int tid = threadIdx.x;
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250204_optimize_b10_s4_e0_sweep/level_2/task_61/b6_s0_fused_rg_const_base/base/base.cu:39:54: warning: narrowing conversion from 'unsigned int' to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
39 | for (int i = tid * 4; i < aligned_elements; i += blockDim.x * 4) {
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250204_optimize_b10_s4_e0_sweep/level_2/task_61/b6_s0_fused_rg_const_base/base/base.cu:71:64: warning: narrowing conversion from 'unsigned int' to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
71 | for (int i = aligned_elements + tid; i < group_elems; i += blockDim.x) {
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250204_optimize_b10_s4_e0_sweep/level_2/task_61/b6_s0_fused_rg_const_base/base/base.cu:109:40: warning: narrowing conversion from 'int' to 'float' [bugprone-narrowing-conversions]
109 | float group_mean = group_sum / group_elems;
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250204_optimize_b10_s4_e0_sweep/level_2/task_61/b6_s0_fused_rg_const_base/base/base.cu:110:35: warning: narrowing conversion from 'int' to 'float' [bugprone-narrowing-conversions]
110 | float var = group_sumsq / group_elems - group_mean * group_mean;
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250204_optimize_b10_s4_e0_sweep/level_2/task_61/b6_s0_fused_rg_const_base/base/base.cu:121:45: warning: narrowing conversion from 'unsigned int' to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
121 | for (int i = tid; i < group_elems; i += blockDim.x) {
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250204_optimize_b10_s4_e0_sweep/level_2/task_61/b6_s0_fused_rg_const_base/base/base.cu:139:19: warning: the parameter 'x' is copied for each invocation but only used as a const reference; consider making it a const reference [performance-unnecessary-value-param]
139 | torch::Tensor x,
| ^
| const &
/home/robert_sakana_ai/llm_cuda/experiments/20250204_optimize_b10_s4_e0_sweep/level_2/task_61/b6_s0_fused_rg_const_base/base/base.cu:140:5: warning: 2 adjacent parameters of 'forward' of similar type ('torch::Tensor') are easily swapped by mistake [bugprone-easily-swappable-parameters]
140 | torch::Tensor conv_transpose,
| ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~
141 | torch::Tensor group_norm_weight,
| ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250204_optimize_b10_s4_e0_sweep/level_2/task_61/b6_s0_fused_rg_const_base/base/base.cu:140:19: note: the first parameter in the range is 'conv_transpose'
140 | torch::Tensor conv_transpose,
| ^~~~~~~~~~~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250204_optimize_b10_s4_e0_sweep/level_2/task_61/b6_s0_fused_rg_const_base/base/base.cu:141:19: note: the last parameter in the range is 'group_norm_weight'
141 | torch::Tensor group_norm_weight,
| ^~~~~~~~~~~~~~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250204_optimize_b10_s4_e0_sweep/level_2/task_61/b6_s0_fused_rg_const_base/base/base.cu:140:19: warning: the parameter 'conv_transpose' is copied for each invocation but only used as a const reference; consider making it a const reference [performance-unnecessary-value-param]
140 | torch::Tensor conv_transpose,
| ^
| const &
/home/robert_sakana_ai/llm_cuda/experiments/20250204_optimize_b10_s4_e0_sweep/level_2/task_61/b6_s0_fused_rg_const_base/base/base.cu:141:19: warning: the parameter 'group_norm_weight' is copied for each invocation but only used as a const reference; consider making it a const reference [performance-unnecessary-value-param]
141 | torch::Tensor group_norm_weight,
| ^
| const &
/home/robert_sakana_ai/llm_cuda/experiments/20250204_optimize_b10_s4_e0_sweep/level_2/task_61/b6_s0_fused_rg_const_base/base/base.cu:142:19: warning: the parameter 'group_norm_bias' is copied for each invocation but only used as a const reference; consider making it a const reference [performance-unnecessary-value-param]
142 | torch::Tensor group_norm_bias,
| ^
| const &
/home/robert_sakana_ai/llm_cuda/experiments/20250204_optimize_b10_s4_e0_sweep/level_2/task_61/b6_s0_fused_rg_const_base/base/base.cu:143:5: warning: 2 adjacent parameters of 'forward' of convertible types are easily swapped by mistake [bugprone-easily-swappable-parameters]
143 | int64_t groups,
| ^~~~~~~~~~~~~~~
144 | double eps) {
| ~~~~~~~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250204_optimize_b10_s4_e0_sweep/level_2/task_61/b6_s0_fused_rg_const_base/base/base.cu:143:13: note: the first parameter in the range is 'groups'
143 | int64_t groups,
| ^~~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250204_optimize_b10_s4_e0_sweep/level_2/task_61/b6_s0_fused_rg_const_base/base/base.cu:144:12: note: the last parameter in the range is 'eps'
144 | double eps) {
| ^~~
/home/robert_sakana_ai/llm_cuda/experiments/20250204_optimize_b10_s4_e0_sweep/level_2/task_61/b6_s0_fused_rg_const_base/base/base.cu:143:5: note:
143 | int64_t groups,
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250204_optimize_b10_s4_e0_sweep/level_2/task_61/b6_s0_fused_rg_const_base/base/base.cu:144:5: note: 'int64_t' and 'double' may be implicitly converted: 'int64_t' (as 'long') -> 'double', 'double' -> 'int64_t' (as 'long')
144 | double eps) {
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250204_optimize_b10_s4_e0_sweep/level_2/task_61/b6_s0_fused_rg_const_base/base/base.cu:158:13: warning: narrowing conversion from 'int64_t' (aka 'long') to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
158 | int N = y.size(0);
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250204_optimize_b10_s4_e0_sweep/level_2/task_61/b6_s0_fused_rg_const_base/base/base.cu:159:13: warning: narrowing conversion from 'int64_t' (aka 'long') to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
159 | int C = y.size(1);
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250204_optimize_b10_s4_e0_sweep/level_2/task_61/b6_s0_fused_rg_const_base/base/base.cu:160:13: warning: narrowing conversion from 'int64_t' (aka 'long') to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
160 | int D = y.size(2);
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250204_optimize_b10_s4_e0_sweep/level_2/task_61/b6_s0_fused_rg_const_base/base/base.cu:161:13: warning: narrowing conversion from 'int64_t' (aka 'long') to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
161 | int H = y.size(3);
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250204_optimize_b10_s4_e0_sweep/level_2/task_61/b6_s0_fused_rg_const_base/base/base.cu:162:13: warning: narrowing conversion from 'int64_t' (aka 'long') to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
162 | int W = y.size(4);
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250204_optimize_b10_s4_e0_sweep/level_2/task_61/b6_s0_fused_rg_const_base/base/base.cu:163:13: warning: narrowing conversion from 'int64_t' (aka 'long') to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
163 | int G = groups;
| ^