← Back to Leaderboard

The AI CUDA Engineer 👷

61_ConvTranspose3d_ReLU_GroupNormfused_rg_coalesced_base

Level 2 • Task 61
import torch
import torch.nn as nn
import torch.nn.functional as F


def module_fn(
    x: torch.Tensor,
    conv_transpose: torch.Tensor,
    group_norm_weight: torch.Tensor,
    group_norm_bias: torch.Tensor,
    groups: int,
    eps: float,
) -> torch.Tensor:
    """
    Applies a transposed 3D convolution, ReLU, and group normalization.

    Args:
        x (torch.Tensor): Input tensor of shape (batch_size, in_channels, D, H, W)
        conv_transpose (torch.Tensor): Transposed convolution weight tensor
        group_norm_weight (torch.Tensor): Weight tensor for group normalization
        group_norm_bias (torch.Tensor): Bias tensor for group normalization
        groups (int): Number of groups for group normalization
        eps (float): Epsilon for group normalization
    Returns:
        torch.Tensor: Output tensor of shape (batch_size, out_channels, D, H, W)
    """
    x = F.conv_transpose3d(x, conv_transpose, bias=None)
    x = F.relu(x)
    x = F.group_norm(x, groups, group_norm_weight, group_norm_bias, eps)
    return x


class Model(nn.Module):
    """
    Model that performs a transposed 3D convolution, applies ReLU, and then applies group normalization.
    """

    def __init__(self, in_channels, out_channels, kernel_size, groups, bias):
        super(Model, self).__init__()
        conv = nn.ConvTranspose3d(in_channels, out_channels, kernel_size)
        self.conv_transpose_parameter = conv.weight

        # set torch seed to 0
        torch.manual_seed(0)
        gn = nn.GroupNorm(num_groups=groups, num_channels=out_channels, eps=eps)
        self.group_norm_weight = nn.Parameter(
            gn.weight + torch.randn_like(gn.weight) * 0.02
        )
        self.group_norm_bias = nn.Parameter(gn.bias + torch.randn_like(gn.bias) * 0.02)

    def forward(self, x, fn=module_fn):
        return fn(
            x,
            self.conv_transpose_parameter,
            self.group_norm_weight,
            self.group_norm_bias,
            groups,
            eps,
        )


batch_size = 16
in_channels = 64
out_channels = 128
D, H, W = 8, 16, 16
kernel_size = 3
groups = 8
bias = False
eps = 1e-5


def get_inputs():
    return [torch.randn(batch_size, in_channels, D, H, W)]


def get_init_inputs():
    return [in_channels, out_channels, kernel_size, groups, bias]
import torch
import torch.nn as nn


class Model(nn.Module):
    """
    Model that performs a transposed 3D convolution, applies ReLU, and then applies group normalization.
    """

    def __init__(
        self, in_channels, out_channels, kernel_size, groups, bias=False, eps=1e-5
    ):
        super(Model, self).__init__()
        self.conv_transpose = nn.ConvTranspose3d(
            in_channels, out_channels, kernel_size, bias=bias
        )
        self.relu = nn.ReLU()
        # set torch seed to 0
        torch.manual_seed(0)
        self.group_norm = nn.GroupNorm(
            num_groups=groups, num_channels=out_channels, eps=eps
        )
        self.group_norm.weight = nn.Parameter(
            self.group_norm.weight + torch.randn_like(self.group_norm.weight) * 0.02
        )
        self.group_norm.bias = nn.Parameter(
            self.group_norm.bias + torch.randn_like(self.group_norm.bias) * 0.02
        )

    def forward(self, x):
        """
        Args:
            x (torch.Tensor): Input tensor of shape (batch_size, in_channels, D, H, W).

        Returns:
            torch.Tensor: Output tensor of shape (batch_size, out_channels, D, H, W).
        """
        x = self.conv_transpose(x)
        x = self.relu(x)
        x = self.group_norm(x)
        return x


batch_size = 16
in_channels = 64
out_channels = 128
D, H, W = 8, 16, 16
kernel_size = 3
groups = 8
bias = False


def get_inputs():
    return [torch.randn(batch_size, in_channels, D, H, W)]


def get_init_inputs():
    return [in_channels, out_channels, kernel_size, groups, bias]

Kernel Information

Related Kernels (Level 2, Task 61 • 61_ConvTranspose3d_ReLU_GroupNorm)

#include <pybind11/pybind11.h>
#include <torch/extension.h>
#include <cuda.h>
#include <cuda_runtime.h>

#define BLOCK_SIZE 256
#define WARP_SIZE 32

// This kernel fuses ReLU and Group Normalization on the output of conv_transpose3d.
// It ensures memory coalescing by aligning global memory accesses using vectorized loads/stores (float4) and
// by loading the per-channel gamma and beta values into shared memory. Threads in a warp access consecutive
// memory locations, which minimizes memory transaction overhead.

// Kernel parameters:
//   data: pointer to tensor of shape [N, C, D, H, W]
//   gamma, beta: GroupNorm parameters (each of length C)
//   N, C, D, H, W: tensor dimensions
//   G: number of groups; channels are divided into G contiguous groups
//   eps: epsilon for numerical stability in variance computation

__global__ void fused_relu_groupnorm_coalesced_kernel(
    float* __restrict__ data,
    const float* __restrict__ gamma,
    const float* __restrict__ beta,
    int N, int C, int D, int H, int W,
    int G, float eps) {

    // Each block processes one (sample, group) pair
    int n = blockIdx.x;       // sample index
    int g = blockIdx.y;       // group index
    int channels_per_group = C / G;
    int spatial_size = D * H * W;
    int group_elems = channels_per_group * spatial_size;

    // Compute the starting offset for this group's data in the tensor
    int group_offset = n * (C * spatial_size) + g * channels_per_group * spatial_size;
    float* group_data = data + group_offset;

    // Allocate dynamic shared memory:
    // First part: two arrays for per-channel gamma and beta (size: channels_per_group each).
    // Second part: two arrays (of fixed size 32) for warp-level reduction of sum and sumsq.
    extern __shared__ float s_mem[];
    float* sh_gamma = s_mem;                           // size: channels_per_group
    float* sh_beta  = sh_gamma + channels_per_group;     // size: channels_per_group
    // Next 64 floats reserved for warp reduction (32 for sum, 32 for sumsq)
    float* s_sum    = sh_beta + channels_per_group;      // size: up to 32 floats
    float* s_sumsq  = s_sum + 32;                         // size: up to 32 floats

    // Load GroupNorm parameters for this group into shared memory for faster access
    if (threadIdx.x < channels_per_group) {
        sh_gamma[threadIdx.x] = gamma[g * channels_per_group + threadIdx.x];
        sh_beta[threadIdx.x]  = beta[g * channels_per_group + threadIdx.x];
    }
    __syncthreads();

    // First pass: Apply ReLU and compute the sum and sumofsquares over all elements in the group.
    // We use vectorized loads/stores (float4) to ensure that threads in a warp access consecutive memory locations.
    int total_vectors = group_elems / 4; // number of float4 elements
    int remainder = group_elems % 4;       // remaining elements that are not part of a full float4

    float local_sum = 0.0f;
    float local_sumsq = 0.0f;

    // Reinterpret the group's data as a float4 pointer for coalesced access
    float4* group_data4 = reinterpret_cast<float4*>(group_data);

    // Process the vectorized portion
    for (int i = threadIdx.x; i < total_vectors; i += blockDim.x) {
        float4 val4 = group_data4[i];
        // Apply ReLU element-wise
        float x0 = fmaxf(val4.x, 0.0f);
        float x1 = fmaxf(val4.y, 0.0f);
        float x2 = fmaxf(val4.z, 0.0f);
        float x3 = fmaxf(val4.w, 0.0f);
        
        // Store the activated values back
        val4.x = x0; val4.y = x1; val4.z = x2; val4.w = x3;
        group_data4[i] = val4;

        // Accumulate the sums and sums of squares
        local_sum   += (x0 + x1 + x2 + x3);
        local_sumsq += (x0*x0 + x1*x1 + x2*x2 + x3*x3);
    }

    // Process the remainder elements with scalar accesses
    int offset = total_vectors * 4;
    for (int i = threadIdx.x; i < remainder; i += blockDim.x) {
        int idx = offset + i;
        float val = group_data[idx];
        float relu_val = fmaxf(val, 0.0f);
        group_data[idx] = relu_val;
        local_sum += relu_val;
        local_sumsq += relu_val * relu_val;
    }

    // Warp-level reduction using shuffle intrinsics
    unsigned int mask = 0xffffffff;
    int lane = threadIdx.x & (WARP_SIZE - 1);
    for (int offset = WARP_SIZE/2; offset > 0; offset /= 2) {
        local_sum   += __shfl_down_sync(mask, local_sum, offset);
        local_sumsq += __shfl_down_sync(mask, local_sumsq, offset);
    }

    // Each warp’s lane 0 writes its result into shared memory
    int warp_id = threadIdx.x / WARP_SIZE;
    if (lane == 0) {
        s_sum[warp_id] = local_sum;
        s_sumsq[warp_id] = local_sumsq;
    }
    __syncthreads();

    // Thread 0 of the block performs the final reduction and computes group mean and inverse std.
    float group_mean, inv_std;
    if (threadIdx.x == 0) {
        int num_warps = (blockDim.x + WARP_SIZE - 1) / WARP_SIZE;
        float sum_total = 0.0f;
        float sumsq_total = 0.0f;
        for (int i = 0; i < num_warps; i++) {
            sum_total  += s_sum[i];
            sumsq_total += s_sumsq[i];
        }
        group_mean = sum_total / group_elems;
        float variance = sumsq_total / group_elems - group_mean * group_mean;
        inv_std = rsqrtf(variance + eps);
        // Store for broadcasting
        s_sum[0] = group_mean;
        s_sumsq[0] = inv_std;
    }
    __syncthreads();
    group_mean = s_sum[0];
    inv_std = s_sumsq[0];

    // Second pass: Normalize the data using the computed group statistics and the per-channel gamma and beta
    // Process the vectorized portion
    for (int i = threadIdx.x; i < total_vectors; i += blockDim.x) {
        float4 val4 = group_data4[i];
        int base_index = i * 4;  // linear index of the first element in this float4
        // Process each component of the float4
        #pragma unroll
        for (int j = 0; j < 4; j++) {
            int idx = base_index + j;            // overall index within the group
            int channel_idx = idx / spatial_size; // determine which channel this element belongs to
            float gamma_val = sh_gamma[channel_idx];
            float beta_val = sh_beta[channel_idx];
            float x = ((&val4.x)[j] - group_mean) * inv_std;
            (&val4.x)[j] = x * gamma_val + beta_val;
        }
        group_data4[i] = val4;
    }

    // Process any remaining elements
    for (int i = threadIdx.x; i < remainder; i += blockDim.x) {
        int idx = total_vectors * 4 + i;
        int channel_idx = idx / spatial_size;
        float x = (group_data[idx] - group_mean) * inv_std;
        group_data[idx] = x * sh_gamma[channel_idx] + sh_beta[channel_idx];
    }
}

// The forward function performs 3D transposed convolution using ATen and then launches the custom fused kernel
// to apply ReLU activation and Group Normalization with aligned, coalesced global memory accesses.

torch::Tensor forward(
    torch::Tensor x,
    torch::Tensor conv_transpose,
    torch::Tensor group_norm_weight,
    torch::Tensor group_norm_bias,
    int64_t groups,
    double eps) {

    auto y = at::conv_transpose3d(
         x,
         conv_transpose,
         /*bias=*/c10::nullopt,
         /*stride=*/{1, 1, 1},
         /*padding=*/{0, 0, 0},
         /*output_padding=*/{0, 0, 0},
         /*groups=*/1,
         /*dilation=*/{1, 1, 1}
    );

    int N = y.size(0);
    int C = y.size(1);
    int D = y.size(2);
    int H = y.size(3);
    int W = y.size(4);
    int G = groups;
    int channels_per_group = C / G;
    
    // Compute shared memory size:
    //  - sh_gamma and sh_beta: 2 * channels_per_group floats
    //  - Warp reduction arrays: 64 floats (32 for sum and 32 for sumsq)
    size_t shared_mem_size = (channels_per_group * 2 + 64) * sizeof(float);
    
    dim3 grid(N, G);
    dim3 block(BLOCK_SIZE);
    
    fused_relu_groupnorm_coalesced_kernel<<<grid, block, shared_mem_size>>>(
         y.data_ptr<float>(),
         group_norm_weight.data_ptr<float>(),
         group_norm_bias.data_ptr<float>(),
         N, C, D, H, W,
         G, static_cast<float>(eps)
    );
    
    cudaDeviceSynchronize();
    return y;
}

PYBIND11_MODULE(TORCH_EXTENSION_NAME, m) {
    m.def("forward", &forward, "Fused ConvTranspose3D + ReLU + GroupNorm with coalesced global memory accesses (CUDA)");
}
Performance Metrics
Metric Value Unit Variance Samples
Executed Ipc Active 0.880 inst/cycle 0.000 5
Executed Ipc Elapsed 0.770 inst/cycle 0.000 5
Issue Slots Busy 22.040 % 0.004 5
Issued Ipc Active 0.880 inst/cycle 0.000 5
SM Busy 22.558 % 0.004 5
Memory Throughput 991720271350.794 byte/second 51510348512542760960.000 5
Mem Busy 23.422 % 0.017 5
Max Bandwidth 32.252 % 0.027 5
L1/TEX Hit Rate 74.950 % 0.000 5
L2 Hit Rate 67.376 % 0.001 5
Mem Pipes Busy 7.158 % 0.002 5
Warp Cycles Per Issued Instruction 9.066 cycle 0.002 5
Warp Cycles Per Executed Instruction 9.072 cycle 0.002 5
Avg. Active Threads Per Warp 31.960 0.000 5
Avg. Not Predicated Off Threads Per Warp 28.020 0.000 5
Max Active Clusters 0.000 cluster 0.000 5
Max Cluster Size 8.000 block 0.000 5
Overall GPU Occupancy 0.000 % 0.000 5
Cluster Occupancy 0.000 % 0.000 5
Block Limit SM 32.000 block 0.000 5
Block Limit Registers 8.000 block 0.000 5
Block Limit Shared Mem 23.000 block 0.000 5
Block Limit Warps 8.000 block 0.000 5
Theoretical Active Warps per SM 64.000 warp 0.000 5
Theoretical Occupancy 100.000 % 0.000 5
Achieved Occupancy 12.446 % 0.000 5
Achieved Active Warps Per SM 7.964 warp 0.000 5
Analysis Rules
Rule Description
INF HighPipeUtilization ALU is the highest-utilized pipeline (22.6%) based on active cycles, taking into account the rates of its different instructions. It executes integer and logic operations. It is well-utilized, but should not be a bottleneck.
INF CPIStall Check the Warp Stall Sampling (All Cycles) table for the top stall locations in your source based on sampling data. The Kernel Profiling Guide (https://docs.nvidia.com/nsight-compute/ProfilingGuide/index.html#metrics-reference) provides more details on each stall reason.
WRN Occupancy This kernel's theoretical occupancy is not impacted by any block limit. The difference between calculated theoretical (100.0%) and measured achieved occupancy (12.4%) can be the result of warp scheduling overheads or workload imbalances during the kernel execution. Load imbalances can occur between warps within a block as well as across blocks of the same kernel. See the CUDA Best Practices Guide (https://docs.nvidia.com/cuda/cuda-c-best-practices-guide/index.html#occupancy) for more details on optimizing occupancy.
Operation / Metric Value Unit
aten::to
CPU Time 467533.39 μs
Device Time 863.13 μs
Self CPU Time 53.73 μs
Self Device Time 0.00 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
aten::_to_copy
CPU Time 467479.66 μs
Device Time 863.13 μs
Self CPU Time 102.99 μs
Self Device Time 0.00 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
aten::empty_strided
CPU Time 466099.27 μs
Device Time 0.00 μs
Self CPU Time 117.52 μs
Self Device Time 0.00 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
cudaDeviceGetStreamPriorityRange
CPU Time 466505.75 μs
Device Time 0.00 μs
Self CPU Time 466505.75 μs
Self Device Time 0.00 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
aten::conv_transpose3d
CPU Time 430218.43 μs
Device Time 1057192.21 μs
Self CPU Time 9977.79 μs
Self Device Time 0.00 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
aten::convolution
CPU Time 420240.64 μs
Device Time 1057192.21 μs
Self CPU Time 15499.61 μs
Self Device Time 0.00 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
aten::_convolution
CPU Time 404741.03 μs
Device Time 1057192.21 μs
Self CPU Time 17098.97 μs
Self Device Time 0.00 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
aten::cudnn_convolution_transpose
CPU Time 387642.06 μs
Device Time 1057192.21 μs
Self CPU Time 196362.11 μs
Self Device Time 1057192.21 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
sm90_xmma_dgrad_implicit_gemm_f32f32_tf32f32_f32_nhwckrsc_nhwc_tilesize256x64x32_warpgroupsize1x1x1_g1_execute_segment_k_off_kernel__5x_cudnn
CPU Time 0.00 μs
Device Time 822377.48 μs
Self CPU Time 0.00 μs
Self Device Time 822377.48 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
cudaDeviceSynchronize
CPU Time 1592730.67 μs
Device Time 110655.64 μs
Self CPU Time 1592730.67 μs
Self Device Time 110655.64 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
Status: Completed
45306 warnings generated when compiling for host.
Suppressed 45323 warnings (45276 in non-user code, 47 NOLINT).
Use -header-filter=.* to display errors from all non-system headers. Use -system-headers to display errors from system headers as well.
/home/robert_sakana_ai/llm_cuda/experiments/20250204_optimize_b10_s4_e0_sweep/level_2/task_61/b6_s1_fused_rg_coalesced/base/base.cu:23:5 bugprone-easily-swappable-parameters
23 | const float* __restrict__ gamma,
| ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
24 | const float* __restrict__ beta,
| ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250204_optimize_b10_s4_e0_sweep/level_2/task_61/b6_s1_fused_rg_coalesced/base/base.cu:23:31: note: the first parameter in the range is 'gamma'
23 | const float* __restrict__ gamma,
| ^~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250204_optimize_b10_s4_e0_sweep/level_2/task_61/b6_s1_fused_rg_coalesced/base/base.cu:24:31: note: the last parameter in the range is 'beta'
24 | const float* __restrict__ beta,
| ^~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250204_optimize_b10_s4_e0_sweep/level_2/task_61/b6_s1_fused_rg_coalesced/base/base.cu:25:5: warning: 3 adjacent parameters of 'fused_relu_groupnorm_coalesced_kernel' of similar type ('int') are easily swapped by mistake [bugprone-easily-swappable-parameters]
25 | int N, int C, int D, int H, int W,
| ^~~~~~~~~~~~~~~~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250204_optimize_b10_s4_e0_sweep/level_2/task_61/b6_s1_fused_rg_coalesced/base/base.cu:25:9: note: the first parameter in the range is 'N'
25 | int N, int C, int D, int H, int W,
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250204_optimize_b10_s4_e0_sweep/level_2/task_61/b6_s1_fused_rg_coalesced/base/base.cu:25:23: note: the last parameter in the range is 'D'
25 | int N, int C, int D, int H, int W,
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250204_optimize_b10_s4_e0_sweep/level_2/task_61/b6_s1_fused_rg_coalesced/base/base.cu:25:33: warning: 3 adjacent parameters of 'fused_relu_groupnorm_coalesced_kernel' of convertible types are easily swapped by mistake [bugprone-easily-swappable-parameters]
25 | int N, int C, int D, int H, int W,
| ^~~~~~
26 | int G, float eps) {
| ~~~~~~~~~~~~~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250204_optimize_b10_s4_e0_sweep/level_2/task_61/b6_s1_fused_rg_coalesced/base/base.cu:25:37: note: the first parameter in the range is 'W'
25 | int N, int C, int D, int H, int W,
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250204_optimize_b10_s4_e0_sweep/level_2/task_61/b6_s1_fused_rg_coalesced/base/base.cu:26:18: note: the last parameter in the range is 'eps'
26 | int G, float eps) {
| ^~~
/home/robert_sakana_ai/llm_cuda/experiments/20250204_optimize_b10_s4_e0_sweep/level_2/task_61/b6_s1_fused_rg_coalesced/base/base.cu:26:12: note: 'int' and 'float' may be implicitly converted
26 | int G, float eps) {
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250204_optimize_b10_s4_e0_sweep/level_2/task_61/b6_s1_fused_rg_coalesced/base/base.cu:29:13: warning: narrowing conversion from 'unsigned int' to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
29 | int n = blockIdx.x; // sample index
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250204_optimize_b10_s4_e0_sweep/level_2/task_61/b6_s1_fused_rg_coalesced/base/base.cu:30:13: warning: narrowing conversion from 'unsigned int' to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
30 | int g = blockIdx.y; // group index
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250204_optimize_b10_s4_e0_sweep/level_2/task_61/b6_s1_fused_rg_coalesced/base/base.cu:68:18: warning: narrowing conversion from 'unsigned int' to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
68 | for (int i = threadIdx.x; i < total_vectors; i += blockDim.x) {
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250204_optimize_b10_s4_e0_sweep/level_2/task_61/b6_s1_fused_rg_coalesced/base/base.cu:68:55: warning: narrowing conversion from 'unsigned int' to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
68 | for (int i = threadIdx.x; i < total_vectors; i += blockDim.x) {
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250204_optimize_b10_s4_e0_sweep/level_2/task_61/b6_s1_fused_rg_coalesced/base/base.cu:87:18: warning: narrowing conversion from 'unsigned int' to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
87 | for (int i = threadIdx.x; i < remainder; i += blockDim.x) {
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250204_optimize_b10_s4_e0_sweep/level_2/task_61/b6_s1_fused_rg_coalesced/base/base.cu:87:51: warning: narrowing conversion from 'unsigned int' to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
87 | for (int i = threadIdx.x; i < remainder; i += blockDim.x) {
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250204_optimize_b10_s4_e0_sweep/level_2/task_61/b6_s1_fused_rg_coalesced/base/base.cu:98:16: warning: narrowing conversion from 'unsigned int' to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
98 | int lane = threadIdx.x & (WARP_SIZE - 1);
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250204_optimize_b10_s4_e0_sweep/level_2/task_61/b6_s1_fused_rg_coalesced/base/base.cu:105:19: warning: narrowing conversion from 'unsigned int' to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
105 | int warp_id = threadIdx.x / WARP_SIZE;
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250204_optimize_b10_s4_e0_sweep/level_2/task_61/b6_s1_fused_rg_coalesced/base/base.cu:115:25: warning: narrowing conversion from 'unsigned int' to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
115 | int num_warps = (blockDim.x + WARP_SIZE - 1) / WARP_SIZE;
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250204_optimize_b10_s4_e0_sweep/level_2/task_61/b6_s1_fused_rg_coalesced/base/base.cu:122:34: warning: narrowing conversion from 'int' to 'float' [bugprone-narrowing-conversions]
122 | group_mean = sum_total / group_elems;
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250204_optimize_b10_s4_e0_sweep/level_2/task_61/b6_s1_fused_rg_coalesced/base/base.cu:123:40: warning: narrowing conversion from 'int' to 'float' [bugprone-narrowing-conversions]
123 | float variance = sumsq_total / group_elems - group_mean * group_mean;
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250204_optimize_b10_s4_e0_sweep/level_2/task_61/b6_s1_fused_rg_coalesced/base/base.cu:135:18: warning: narrowing conversion from 'unsigned int' to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
135 | for (int i = threadIdx.x; i < total_vectors; i += blockDim.x) {
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250204_optimize_b10_s4_e0_sweep/level_2/task_61/b6_s1_fused_rg_coalesced/base/base.cu:135:55: warning: narrowing conversion from 'unsigned int' to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
135 | for (int i = threadIdx.x; i < total_vectors; i += blockDim.x) {
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250204_optimize_b10_s4_e0_sweep/level_2/task_61/b6_s1_fused_rg_coalesced/base/base.cu:152:18: warning: narrowing conversion from 'unsigned int' to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
152 | for (int i = threadIdx.x; i < remainder; i += blockDim.x) {
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250204_optimize_b10_s4_e0_sweep/level_2/task_61/b6_s1_fused_rg_coalesced/base/base.cu:152:51: warning: narrowing conversion from 'unsigned int' to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
152 | for (int i = threadIdx.x; i < remainder; i += blockDim.x) {
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250204_optimize_b10_s4_e0_sweep/level_2/task_61/b6_s1_fused_rg_coalesced/base/base.cu:164:19: warning: the parameter 'x' is copied for each invocation but only used as a const reference; consider making it a const reference [performance-unnecessary-value-param]
164 | torch::Tensor x,
| ^
| const &
/home/robert_sakana_ai/llm_cuda/experiments/20250204_optimize_b10_s4_e0_sweep/level_2/task_61/b6_s1_fused_rg_coalesced/base/base.cu:165:5: warning: 2 adjacent parameters of 'forward' of similar type ('torch::Tensor') are easily swapped by mistake [bugprone-easily-swappable-parameters]
165 | torch::Tensor conv_transpose,
| ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~
166 | torch::Tensor group_norm_weight,
| ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250204_optimize_b10_s4_e0_sweep/level_2/task_61/b6_s1_fused_rg_coalesced/base/base.cu:165:19: note: the first parameter in the range is 'conv_transpose'
165 | torch::Tensor conv_transpose,
| ^~~~~~~~~~~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250204_optimize_b10_s4_e0_sweep/level_2/task_61/b6_s1_fused_rg_coalesced/base/base.cu:166:19: note: the last parameter in the range is 'group_norm_weight'
166 | torch::Tensor group_norm_weight,
| ^~~~~~~~~~~~~~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250204_optimize_b10_s4_e0_sweep/level_2/task_61/b6_s1_fused_rg_coalesced/base/base.cu:165:19: warning: the parameter 'conv_transpose' is copied for each invocation but only used as a const reference; consider making it a const reference [performance-unnecessary-value-param]
165 | torch::Tensor conv_transpose,
| ^
| const &
/home/robert_sakana_ai/llm_cuda/experiments/20250204_optimize_b10_s4_e0_sweep/level_2/task_61/b6_s1_fused_rg_coalesced/base/base.cu:166:19: warning: the parameter 'group_norm_weight' is copied for each invocation but only used as a const reference; consider making it a const reference [performance-unnecessary-value-param]
166 | torch::Tensor group_norm_weight,
| ^
| const &
/home/robert_sakana_ai/llm_cuda/experiments/20250204_optimize_b10_s4_e0_sweep/level_2/task_61/b6_s1_fused_rg_coalesced/base/base.cu:167:19: warning: the parameter 'group_norm_bias' is copied for each invocation but only used as a const reference; consider making it a const reference [performance-unnecessary-value-param]
167 | torch::Tensor group_norm_bias,
| ^
| const &
/home/robert_sakana_ai/llm_cuda/experiments/20250204_optimize_b10_s4_e0_sweep/level_2/task_61/b6_s1_fused_rg_coalesced/base/base.cu:168:5: warning: 2 adjacent parameters of 'forward' of convertible types are easily swapped by mistake [bugprone-easily-swappable-parameters]
168 | int64_t groups,
| ^~~~~~~~~~~~~~~
169 | double eps) {
| ~~~~~~~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250204_optimize_b10_s4_e0_sweep/level_2/task_61/b6_s1_fused_rg_coalesced/base/base.cu:168:13: note: the first parameter in the range is 'groups'
168 | int64_t groups,
| ^~~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250204_optimize_b10_s4_e0_sweep/level_2/task_61/b6_s1_fused_rg_coalesced/base/base.cu:169:12: note: the last parameter in the range is 'eps'
169 | double eps) {
| ^~~
/home/robert_sakana_ai/llm_cuda/experiments/20250204_optimize_b10_s4_e0_sweep/level_2/task_61/b6_s1_fused_rg_coalesced/base/base.cu:168:5: note:
168 | int64_t groups,
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250204_optimize_b10_s4_e0_sweep/level_2/task_61/b6_s1_fused_rg_coalesced/base/base.cu:169:5: note: 'int64_t' and 'double' may be implicitly converted: 'int64_t' (as 'long') -> 'double', 'double' -> 'int64_t' (as 'long')
169 | double eps) {
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250204_optimize_b10_s4_e0_sweep/level_2/task_61/b6_s1_fused_rg_coalesced/base/base.cu:182:13: warning: narrowing conversion from 'int64_t' (aka 'long') to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
182 | int N = y.size(0);
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250204_optimize_b10_s4_e0_sweep/level_2/task_61/b6_s1_fused_rg_coalesced/base/base.cu:183:13: warning: narrowing conversion from 'int64_t' (aka 'long') to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
183 | int C = y.size(1);
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250204_optimize_b10_s4_e0_sweep/level_2/task_61/b6_s1_fused_rg_coalesced/base/base.cu:184:13: warning: narrowing conversion from 'int64_t' (aka 'long') to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
184 | int D = y.size(2);
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250204_optimize_b10_s4_e0_sweep/level_2/task_61/b6_s1_fused_rg_coalesced/base/base.cu:185:13: warning: narrowing conversion from 'int64_t' (aka 'long') to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
185 | int H = y.size(3);
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250204_optimize_b10_s4_e0_sweep/level_2/task_61/b6_s1_fused_rg_coalesced/base/base.cu:186:13: warning: narrowing conversion from 'int64_t' (aka 'long') to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
186 | int W = y.size(4);
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250204_optimize_b10_s4_e0_sweep/level_2/task_61/b6_s1_fused_rg_coalesced/base/base.cu:187:13: warning: narrowing conversion from 'int64_t' (aka 'long') to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
187 | int G = groups;
| ^