← Back to Leaderboard

The AI CUDA Engineer 👷

61_ConvTranspose3d_ReLU_GroupNormfused_rg_no_divergence_base

Level 2 • Task 61
import torch
import torch.nn as nn
import torch.nn.functional as F


def module_fn(
    x: torch.Tensor,
    conv_transpose: torch.Tensor,
    group_norm_weight: torch.Tensor,
    group_norm_bias: torch.Tensor,
    groups: int,
    eps: float,
) -> torch.Tensor:
    """
    Applies a transposed 3D convolution, ReLU, and group normalization.

    Args:
        x (torch.Tensor): Input tensor of shape (batch_size, in_channels, D, H, W)
        conv_transpose (torch.Tensor): Transposed convolution weight tensor
        group_norm_weight (torch.Tensor): Weight tensor for group normalization
        group_norm_bias (torch.Tensor): Bias tensor for group normalization
        groups (int): Number of groups for group normalization
        eps (float): Epsilon for group normalization
    Returns:
        torch.Tensor: Output tensor of shape (batch_size, out_channels, D, H, W)
    """
    x = F.conv_transpose3d(x, conv_transpose, bias=None)
    x = F.relu(x)
    x = F.group_norm(x, groups, group_norm_weight, group_norm_bias, eps)
    return x


class Model(nn.Module):
    """
    Model that performs a transposed 3D convolution, applies ReLU, and then applies group normalization.
    """

    def __init__(self, in_channels, out_channels, kernel_size, groups, bias):
        super(Model, self).__init__()
        conv = nn.ConvTranspose3d(in_channels, out_channels, kernel_size)
        self.conv_transpose_parameter = conv.weight

        # set torch seed to 0
        torch.manual_seed(0)
        gn = nn.GroupNorm(num_groups=groups, num_channels=out_channels, eps=eps)
        self.group_norm_weight = nn.Parameter(
            gn.weight + torch.randn_like(gn.weight) * 0.02
        )
        self.group_norm_bias = nn.Parameter(gn.bias + torch.randn_like(gn.bias) * 0.02)

    def forward(self, x, fn=module_fn):
        return fn(
            x,
            self.conv_transpose_parameter,
            self.group_norm_weight,
            self.group_norm_bias,
            groups,
            eps,
        )


batch_size = 16
in_channels = 64
out_channels = 128
D, H, W = 8, 16, 16
kernel_size = 3
groups = 8
bias = False
eps = 1e-5


def get_inputs():
    return [torch.randn(batch_size, in_channels, D, H, W)]


def get_init_inputs():
    return [in_channels, out_channels, kernel_size, groups, bias]
import torch
import torch.nn as nn


class Model(nn.Module):
    """
    Model that performs a transposed 3D convolution, applies ReLU, and then applies group normalization.
    """

    def __init__(
        self, in_channels, out_channels, kernel_size, groups, bias=False, eps=1e-5
    ):
        super(Model, self).__init__()
        self.conv_transpose = nn.ConvTranspose3d(
            in_channels, out_channels, kernel_size, bias=bias
        )
        self.relu = nn.ReLU()
        # set torch seed to 0
        torch.manual_seed(0)
        self.group_norm = nn.GroupNorm(
            num_groups=groups, num_channels=out_channels, eps=eps
        )
        self.group_norm.weight = nn.Parameter(
            self.group_norm.weight + torch.randn_like(self.group_norm.weight) * 0.02
        )
        self.group_norm.bias = nn.Parameter(
            self.group_norm.bias + torch.randn_like(self.group_norm.bias) * 0.02
        )

    def forward(self, x):
        """
        Args:
            x (torch.Tensor): Input tensor of shape (batch_size, in_channels, D, H, W).

        Returns:
            torch.Tensor: Output tensor of shape (batch_size, out_channels, D, H, W).
        """
        x = self.conv_transpose(x)
        x = self.relu(x)
        x = self.group_norm(x)
        return x


batch_size = 16
in_channels = 64
out_channels = 128
D, H, W = 8, 16, 16
kernel_size = 3
groups = 8
bias = False


def get_inputs():
    return [torch.randn(batch_size, in_channels, D, H, W)]


def get_init_inputs():
    return [in_channels, out_channels, kernel_size, groups, bias]

Kernel Information

Related Kernels (Level 2, Task 61 • 61_ConvTranspose3d_ReLU_GroupNorm)

#include <pybind11/pybind11.h>
#include <torch/extension.h>
#include <cuda.h>
#include <cuda_runtime.h>

#define BLOCK_SIZE 256
#define WARP_SIZE 32

// This kernel fuses ReLU and GroupNorm with minimized warp divergence.
// It refactors conditional logic into uniform loops and uses vectorized memory accesses for the main body.

__global__ void fused_relu_groupnorm_no_div_kernel(
    float* __restrict__ data,            // tensor of shape [N, C, D, H, W]
    const float* __restrict__ gamma,       // GroupNorm weight, shape: [C]
    const float* __restrict__ beta,        // GroupNorm bias, shape: [C]
    int N, int C, int D, int H, int W,
    int G, float eps)                      // groups and epsilon
{
    // Compute tensor dimensions
    int spatial_size = D * H * W;
    int channels_per_group = C / G;

    // Identify current sample and group
    int n = blockIdx.x;  // sample index
    int g = blockIdx.y;  // group index
    int c_start = g * channels_per_group;

    // Pointer to the current group's data
    int group_offset = n * (C * spatial_size) + c_start * spatial_size;
    float* group_data = data + group_offset;
    int group_elems = channels_per_group * spatial_size;

    // Allocate shared memory:
    // - First: load gamma and beta for this group (each array of size channels_per_group)
    // - Next: two arrays for warp reduction (WARP_SIZE each for sum and sumsq)
    extern __shared__ float s_mem[];
    float* sh_gamma = s_mem;                         // size: channels_per_group floats
    float* sh_beta  = sh_gamma + channels_per_group;   // size: channels_per_group floats
    float* s_sum    = sh_beta + channels_per_group;    // size: WARP_SIZE floats
    float* s_sumsq  = s_sum + WARP_SIZE;               // size: WARP_SIZE floats

    // Uniformly load GroupNorm parameters into shared memory
    for (int i = threadIdx.x; i < channels_per_group; i += blockDim.x) {
        sh_gamma[i] = gamma[g * channels_per_group + i];
        sh_beta[i]  = beta[g * channels_per_group + i];
    }
    __syncthreads();

    // First pass: Apply ReLU and accumulate sum and sum-of-squares.
    float local_sum = 0.f;
    float local_sumsq = 0.f;

    // Process as many elements as possible with vectorized loads (float4) for coalesced access
    int num_vec = group_elems >> 2;  // equivalent to group_elems / 4
    float4* group_data4 = reinterpret_cast<float4*>(group_data);

    for (int i = threadIdx.x; i < num_vec; i += blockDim.x) {
        float4 v = group_data4[i];
        // Apply ReLU in a branchless manner
        v.x = fmaxf(v.x, 0.f);
        v.y = fmaxf(v.y, 0.f);
        v.z = fmaxf(v.z, 0.f);
        v.w = fmaxf(v.w, 0.f);
        group_data4[i] = v;
        
        float sum_val = v.x + v.y + v.z + v.w;
        float sumsq_val = v.x*v.x + v.y*v.y + v.z*v.z + v.w*v.w;
        local_sum += sum_val;
        local_sumsq += sumsq_val;
    }

    // Process remaining elements (if group_elems is not divisible by 4)
    int start = num_vec << 2; // start index for remainder
    int rem = group_elems - start;  // remainder count (<4)
    int num_rem_iters = (rem + blockDim.x - 1) / blockDim.x;
    for (int i = 0; i < num_rem_iters; i++) {
        int idx = start + i * blockDim.x + threadIdx.x;
        if (idx < group_elems) {
            float val = group_data[idx];
            float r = fmaxf(val, 0.f);
            group_data[idx] = r;
            local_sum += r;
            local_sumsq += r * r;
        }
    }

    // Warp-level reduction using shuffle intrinsics for uniform control flow
    unsigned int mask = 0xffffffff;
    int lane = threadIdx.x & (WARP_SIZE - 1);
    for (int offset = WARP_SIZE / 2; offset > 0; offset /= 2) {
        local_sum  += __shfl_down_sync(mask, local_sum, offset);
        local_sumsq += __shfl_down_sync(mask, local_sumsq, offset);
    }

    // Write warp-level results to shared memory
    int warp_id = threadIdx.x / WARP_SIZE;
    if (lane == 0) {
        s_sum[warp_id] = local_sum;
        s_sumsq[warp_id] = local_sumsq;
    }
    __syncthreads();

    // Final block-level reduction by thread 0
    if (threadIdx.x == 0) {
        float group_sum = 0.f;
        float group_sumsq = 0.f;
        int num_warps = (blockDim.x + WARP_SIZE - 1) / WARP_SIZE;
        for (int i = 0; i < num_warps; i++) {
            group_sum  += s_sum[i];
            group_sumsq += s_sumsq[i];
        }
        float mean = group_sum / group_elems;
        float var = group_sumsq / group_elems - mean * mean;
        float inv_std = rsqrtf(var + eps);
        s_sum[0] = mean;       // broadcast mean
        s_sumsq[0] = inv_std;  // broadcast inverse std
    }
    __syncthreads();

    float mean = s_sum[0];
    float inv_std = s_sumsq[0];

    // Second pass: Normalize the data using loaded gamma and beta from shared memory
    for (int i = threadIdx.x; i < group_elems; i += blockDim.x) {
        int channel = i / spatial_size;  // Determine channel index within the group
        float g_val = sh_gamma[channel];
        float b_val = sh_beta[channel];
        float norm_val = (group_data[i] - mean) * inv_std;
        group_data[i] = norm_val * g_val + b_val;
    }
}

// Forward function: First performs 3D transposed convolution, then applies the fused kernel

torch::Tensor forward(
    torch::Tensor x,
    torch::Tensor conv_transpose,
    torch::Tensor group_norm_weight,
    torch::Tensor group_norm_bias,
    int64_t groups,
    double eps) {

    // Perform 3D transposed convolution using the ATen operator
    auto y = at::conv_transpose3d(
        x,
        conv_transpose,
        /*bias=*/c10::nullopt,
        /*stride=*/{1, 1, 1},
        /*padding=*/{0, 0, 0},
        /*output_padding=*/{0, 0, 0},
        /*groups=*/1,
        /*dilation=*/{1, 1, 1}
    );

    int N = y.size(0);
    int C = y.size(1);
    int D = y.size(2);
    int H = y.size(3);
    int W = y.size(4);
    int G = groups;
    int channels_per_group = C / G;
    int spatial_size = D * H * W;

    // Calculate shared memory size in bytes:
    // - Two arrays for gamma and beta: 2 * channels_per_group floats
    // - Two warp reduction arrays: 2 * WARP_SIZE floats
    size_t shared_mem_size = (channels_per_group * 2 + 2 * WARP_SIZE) * sizeof(float);

    dim3 grid(N, G);
    dim3 block(BLOCK_SIZE);

    fused_relu_groupnorm_no_div_kernel<<<grid, block, shared_mem_size>>>(
         y.data_ptr<float>(),
         group_norm_weight.data_ptr<float>(),
         group_norm_bias.data_ptr<float>(),
         N, C, D, H, W,
         G, static_cast<float>(eps)
    );

    cudaDeviceSynchronize();
    return y;
}

PYBIND11_MODULE(TORCH_EXTENSION_NAME, m) {
    m.def("forward", &forward, "Fused ConvTranspose3D + ReLU + GroupNorm with minimized warp divergence (CUDA)");
}
Performance Metrics
Metric Value Unit Variance Samples
Executed Ipc Active 0.758 inst/cycle 0.000 5
Executed Ipc Elapsed 0.666 inst/cycle 0.000 5
Issue Slots Busy 18.966 % 0.005 5
Issued Ipc Active 0.758 inst/cycle 0.000 5
SM Busy 19.838 % 0.005 5
Memory Throughput 861432738929.230 byte/second 32785721240598818816.000 5
Mem Busy 20.188 % 0.023 5
Max Bandwidth 27.730 % 0.046 5
L1/TEX Hit Rate 74.950 % 0.000 5
L2 Hit Rate 67.366 % 0.001 5
Mem Pipes Busy 9.094 % 0.005 5
Warp Cycles Per Issued Instruction 10.520 cycle 0.000 5
Warp Cycles Per Executed Instruction 10.528 cycle 0.000 5
Avg. Active Threads Per Warp 31.960 0.000 5
Avg. Not Predicated Off Threads Per Warp 28.050 0.000 5
Max Active Clusters 0.000 cluster 0.000 5
Max Cluster Size 8.000 block 0.000 5
Overall GPU Occupancy 0.000 % 0.000 5
Cluster Occupancy 0.000 % 0.000 5
Block Limit SM 32.000 block 0.000 5
Block Limit Registers 8.000 block 0.000 5
Block Limit Shared Mem 23.000 block 0.000 5
Block Limit Warps 8.000 block 0.000 5
Theoretical Active Warps per SM 64.000 warp 0.000 5
Theoretical Occupancy 100.000 % 0.000 5
Achieved Occupancy 12.490 % 0.000 5
Achieved Active Warps Per SM 7.990 warp 0.000 5
Analysis Rules
Rule Description
WRN HighPipeUtilization All compute pipelines are under-utilized. Either this kernel is very small or it doesn't issue enough warps per scheduler. Check the Launch Statistics and Scheduler Statistics sections for further details.
INF CPIStall Check the Warp Stall Sampling (All Cycles) table for the top stall locations in your source based on sampling data. The Kernel Profiling Guide (https://docs.nvidia.com/nsight-compute/ProfilingGuide/index.html#metrics-reference) provides more details on each stall reason.
WRN Occupancy This kernel's theoretical occupancy is not impacted by any block limit. The difference between calculated theoretical (100.0%) and measured achieved occupancy (12.5%) can be the result of warp scheduling overheads or workload imbalances during the kernel execution. Load imbalances can occur between warps within a block as well as across blocks of the same kernel. See the CUDA Best Practices Guide (https://docs.nvidia.com/cuda/cuda-c-best-practices-guide/index.html#occupancy) for more details on optimizing occupancy.
Operation / Metric Value Unit
aten::to
CPU Time 387169.32 μs
Device Time 792.92 μs
Self CPU Time 56.12 μs
Self Device Time 0.00 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
aten::conv_transpose3d
CPU Time 419241.27 μs
Device Time 1077724.20 μs
Self CPU Time 10567.85 μs
Self Device Time 0.00 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
aten::convolution
CPU Time 408673.42 μs
Device Time 1077724.20 μs
Self CPU Time 16260.12 μs
Self Device Time 0.00 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
aten::_convolution
CPU Time 392413.30 μs
Device Time 1077724.20 μs
Self CPU Time 17611.94 μs
Self Device Time 0.00 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
aten::cudnn_convolution_transpose
CPU Time 374801.36 μs
Device Time 1077724.20 μs
Self CPU Time 189469.21 μs
Self Device Time 1077724.20 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
sm90_xmma_dgrad_implicit_gemm_f32f32_tf32f32_f32_nhwckrsc_nhwc_tilesize256x64x32_warpgroupsize1x1x1_g1_execute_segment_k_off_kernel__5x_cudnn
CPU Time 0.00 μs
Device Time 833369.88 μs
Self CPU Time 0.00 μs
Self Device Time 833369.88 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
cudaDeviceSynchronize
CPU Time 1647084.35 μs
Device Time 112605.15 μs
Self CPU Time 1647084.35 μs
Self Device Time 112605.15 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
Status: Completed
45307 warnings generated when compiling for host.
Suppressed 45323 warnings (45276 in non-user code, 47 NOLINT).
Use -header-filter=.* to display errors from all non-system headers. Use -system-headers to display errors from system headers as well.
/home/robert_sakana_ai/llm_cuda/experiments/20250204_optimize_b10_s4_e0_sweep/level_2/task_61/b7_s3_fused_rg_no_divergence/base/base.cu:14:5 bugprone-easily-swappable-parameters
14 | const float* __restrict__ gamma, // GroupNorm weight, shape: [C]
| ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
15 | const float* __restrict__ beta, // GroupNorm bias, shape: [C]
| ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250204_optimize_b10_s4_e0_sweep/level_2/task_61/b7_s3_fused_rg_no_divergence/base/base.cu:14:31: note: the first parameter in the range is 'gamma'
14 | const float* __restrict__ gamma, // GroupNorm weight, shape: [C]
| ^~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250204_optimize_b10_s4_e0_sweep/level_2/task_61/b7_s3_fused_rg_no_divergence/base/base.cu:15:31: note: the last parameter in the range is 'beta'
15 | const float* __restrict__ beta, // GroupNorm bias, shape: [C]
| ^~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250204_optimize_b10_s4_e0_sweep/level_2/task_61/b7_s3_fused_rg_no_divergence/base/base.cu:16:5: warning: 3 adjacent parameters of 'fused_relu_groupnorm_no_div_kernel' of similar type ('int') are easily swapped by mistake [bugprone-easily-swappable-parameters]
16 | int N, int C, int D, int H, int W,
| ^~~~~~~~~~~~~~~~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250204_optimize_b10_s4_e0_sweep/level_2/task_61/b7_s3_fused_rg_no_divergence/base/base.cu:16:9: note: the first parameter in the range is 'N'
16 | int N, int C, int D, int H, int W,
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250204_optimize_b10_s4_e0_sweep/level_2/task_61/b7_s3_fused_rg_no_divergence/base/base.cu:16:23: note: the last parameter in the range is 'D'
16 | int N, int C, int D, int H, int W,
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250204_optimize_b10_s4_e0_sweep/level_2/task_61/b7_s3_fused_rg_no_divergence/base/base.cu:16:33: warning: 3 adjacent parameters of 'fused_relu_groupnorm_no_div_kernel' of convertible types are easily swapped by mistake [bugprone-easily-swappable-parameters]
16 | int N, int C, int D, int H, int W,
| ^~~~~~
17 | int G, float eps) // groups and epsilon
| ~~~~~~~~~~~~~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250204_optimize_b10_s4_e0_sweep/level_2/task_61/b7_s3_fused_rg_no_divergence/base/base.cu:16:37: note: the first parameter in the range is 'W'
16 | int N, int C, int D, int H, int W,
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250204_optimize_b10_s4_e0_sweep/level_2/task_61/b7_s3_fused_rg_no_divergence/base/base.cu:17:18: note: the last parameter in the range is 'eps'
17 | int G, float eps) // groups and epsilon
| ^~~
/home/robert_sakana_ai/llm_cuda/experiments/20250204_optimize_b10_s4_e0_sweep/level_2/task_61/b7_s3_fused_rg_no_divergence/base/base.cu:17:12: note: 'int' and 'float' may be implicitly converted
17 | int G, float eps) // groups and epsilon
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250204_optimize_b10_s4_e0_sweep/level_2/task_61/b7_s3_fused_rg_no_divergence/base/base.cu:24:13: warning: narrowing conversion from 'unsigned int' to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
24 | int n = blockIdx.x; // sample index
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250204_optimize_b10_s4_e0_sweep/level_2/task_61/b7_s3_fused_rg_no_divergence/base/base.cu:25:13: warning: narrowing conversion from 'unsigned int' to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
25 | int g = blockIdx.y; // group index
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250204_optimize_b10_s4_e0_sweep/level_2/task_61/b7_s3_fused_rg_no_divergence/base/base.cu:43:18: warning: narrowing conversion from 'unsigned int' to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
43 | for (int i = threadIdx.x; i < channels_per_group; i += blockDim.x) {
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250204_optimize_b10_s4_e0_sweep/level_2/task_61/b7_s3_fused_rg_no_divergence/base/base.cu:43:60: warning: narrowing conversion from 'unsigned int' to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
43 | for (int i = threadIdx.x; i < channels_per_group; i += blockDim.x) {
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250204_optimize_b10_s4_e0_sweep/level_2/task_61/b7_s3_fused_rg_no_divergence/base/base.cu:57:18: warning: narrowing conversion from 'unsigned int' to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
57 | for (int i = threadIdx.x; i < num_vec; i += blockDim.x) {
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250204_optimize_b10_s4_e0_sweep/level_2/task_61/b7_s3_fused_rg_no_divergence/base/base.cu:57:49: warning: narrowing conversion from 'unsigned int' to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
57 | for (int i = threadIdx.x; i < num_vec; i += blockDim.x) {
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250204_optimize_b10_s4_e0_sweep/level_2/task_61/b7_s3_fused_rg_no_divergence/base/base.cu:75:25: warning: narrowing conversion from 'unsigned int' to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
75 | int num_rem_iters = (rem + blockDim.x - 1) / blockDim.x;
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250204_optimize_b10_s4_e0_sweep/level_2/task_61/b7_s3_fused_rg_no_divergence/base/base.cu:77:19: warning: narrowing conversion from 'unsigned int' to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
77 | int idx = start + i * blockDim.x + threadIdx.x;
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250204_optimize_b10_s4_e0_sweep/level_2/task_61/b7_s3_fused_rg_no_divergence/base/base.cu:89:16: warning: narrowing conversion from 'unsigned int' to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
89 | int lane = threadIdx.x & (WARP_SIZE - 1);
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250204_optimize_b10_s4_e0_sweep/level_2/task_61/b7_s3_fused_rg_no_divergence/base/base.cu:96:19: warning: narrowing conversion from 'unsigned int' to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
96 | int warp_id = threadIdx.x / WARP_SIZE;
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250204_optimize_b10_s4_e0_sweep/level_2/task_61/b7_s3_fused_rg_no_divergence/base/base.cu:107:25: warning: narrowing conversion from 'unsigned int' to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
107 | int num_warps = (blockDim.x + WARP_SIZE - 1) / WARP_SIZE;
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250204_optimize_b10_s4_e0_sweep/level_2/task_61/b7_s3_fused_rg_no_divergence/base/base.cu:112:34: warning: narrowing conversion from 'int' to 'float' [bugprone-narrowing-conversions]
112 | float mean = group_sum / group_elems;
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250204_optimize_b10_s4_e0_sweep/level_2/task_61/b7_s3_fused_rg_no_divergence/base/base.cu:113:35: warning: narrowing conversion from 'int' to 'float' [bugprone-narrowing-conversions]
113 | float var = group_sumsq / group_elems - mean * mean;
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250204_optimize_b10_s4_e0_sweep/level_2/task_61/b7_s3_fused_rg_no_divergence/base/base.cu:124:18: warning: narrowing conversion from 'unsigned int' to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
124 | for (int i = threadIdx.x; i < group_elems; i += blockDim.x) {
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250204_optimize_b10_s4_e0_sweep/level_2/task_61/b7_s3_fused_rg_no_divergence/base/base.cu:124:53: warning: narrowing conversion from 'unsigned int' to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
124 | for (int i = threadIdx.x; i < group_elems; i += blockDim.x) {
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250204_optimize_b10_s4_e0_sweep/level_2/task_61/b7_s3_fused_rg_no_divergence/base/base.cu:136:19: warning: the parameter 'x' is copied for each invocation but only used as a const reference; consider making it a const reference [performance-unnecessary-value-param]
136 | torch::Tensor x,
| ^
| const &
/home/robert_sakana_ai/llm_cuda/experiments/20250204_optimize_b10_s4_e0_sweep/level_2/task_61/b7_s3_fused_rg_no_divergence/base/base.cu:137:5: warning: 2 adjacent parameters of 'forward' of similar type ('torch::Tensor') are easily swapped by mistake [bugprone-easily-swappable-parameters]
137 | torch::Tensor conv_transpose,
| ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~
138 | torch::Tensor group_norm_weight,
| ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250204_optimize_b10_s4_e0_sweep/level_2/task_61/b7_s3_fused_rg_no_divergence/base/base.cu:137:19: note: the first parameter in the range is 'conv_transpose'
137 | torch::Tensor conv_transpose,
| ^~~~~~~~~~~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250204_optimize_b10_s4_e0_sweep/level_2/task_61/b7_s3_fused_rg_no_divergence/base/base.cu:138:19: note: the last parameter in the range is 'group_norm_weight'
138 | torch::Tensor group_norm_weight,
| ^~~~~~~~~~~~~~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250204_optimize_b10_s4_e0_sweep/level_2/task_61/b7_s3_fused_rg_no_divergence/base/base.cu:137:19: warning: the parameter 'conv_transpose' is copied for each invocation but only used as a const reference; consider making it a const reference [performance-unnecessary-value-param]
137 | torch::Tensor conv_transpose,
| ^
| const &
/home/robert_sakana_ai/llm_cuda/experiments/20250204_optimize_b10_s4_e0_sweep/level_2/task_61/b7_s3_fused_rg_no_divergence/base/base.cu:138:19: warning: the parameter 'group_norm_weight' is copied for each invocation but only used as a const reference; consider making it a const reference [performance-unnecessary-value-param]
138 | torch::Tensor group_norm_weight,
| ^
| const &
/home/robert_sakana_ai/llm_cuda/experiments/20250204_optimize_b10_s4_e0_sweep/level_2/task_61/b7_s3_fused_rg_no_divergence/base/base.cu:139:19: warning: the parameter 'group_norm_bias' is copied for each invocation but only used as a const reference; consider making it a const reference [performance-unnecessary-value-param]
139 | torch::Tensor group_norm_bias,
| ^
| const &
/home/robert_sakana_ai/llm_cuda/experiments/20250204_optimize_b10_s4_e0_sweep/level_2/task_61/b7_s3_fused_rg_no_divergence/base/base.cu:140:5: warning: 2 adjacent parameters of 'forward' of convertible types are easily swapped by mistake [bugprone-easily-swappable-parameters]
140 | int64_t groups,
| ^~~~~~~~~~~~~~~
141 | double eps) {
| ~~~~~~~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250204_optimize_b10_s4_e0_sweep/level_2/task_61/b7_s3_fused_rg_no_divergence/base/base.cu:140:13: note: the first parameter in the range is 'groups'
140 | int64_t groups,
| ^~~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250204_optimize_b10_s4_e0_sweep/level_2/task_61/b7_s3_fused_rg_no_divergence/base/base.cu:141:12: note: the last parameter in the range is 'eps'
141 | double eps) {
| ^~~
/home/robert_sakana_ai/llm_cuda/experiments/20250204_optimize_b10_s4_e0_sweep/level_2/task_61/b7_s3_fused_rg_no_divergence/base/base.cu:140:5: note:
140 | int64_t groups,
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250204_optimize_b10_s4_e0_sweep/level_2/task_61/b7_s3_fused_rg_no_divergence/base/base.cu:141:5: note: 'int64_t' and 'double' may be implicitly converted: 'int64_t' (as 'long') -> 'double', 'double' -> 'int64_t' (as 'long')
141 | double eps) {
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250204_optimize_b10_s4_e0_sweep/level_2/task_61/b7_s3_fused_rg_no_divergence/base/base.cu:155:13: warning: narrowing conversion from 'int64_t' (aka 'long') to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
155 | int N = y.size(0);
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250204_optimize_b10_s4_e0_sweep/level_2/task_61/b7_s3_fused_rg_no_divergence/base/base.cu:156:13: warning: narrowing conversion from 'int64_t' (aka 'long') to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
156 | int C = y.size(1);
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250204_optimize_b10_s4_e0_sweep/level_2/task_61/b7_s3_fused_rg_no_divergence/base/base.cu:157:13: warning: narrowing conversion from 'int64_t' (aka 'long') to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
157 | int D = y.size(2);
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250204_optimize_b10_s4_e0_sweep/level_2/task_61/b7_s3_fused_rg_no_divergence/base/base.cu:158:13: warning: narrowing conversion from 'int64_t' (aka 'long') to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
158 | int H = y.size(3);
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250204_optimize_b10_s4_e0_sweep/level_2/task_61/b7_s3_fused_rg_no_divergence/base/base.cu:159:13: warning: narrowing conversion from 'int64_t' (aka 'long') to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
159 | int W = y.size(4);
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250204_optimize_b10_s4_e0_sweep/level_2/task_61/b7_s3_fused_rg_no_divergence/base/base.cu:160:13: warning: narrowing conversion from 'int64_t' (aka 'long') to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
160 | int G = groups;
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250204_optimize_b10_s4_e0_sweep/level_2/task_61/b7_s3_fused_rg_no_divergence/base/base.cu:162:9: warning: Value stored to 'spatial_size' during its initialization is never read [clang-analyzer-deadcode.DeadStores]
162 | int spatial_size = D * H * W;
| ^~~~~~~~~~~~ ~~~~~~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250204_optimize_b10_s4_e0_sweep/level_2/task_61/b7_s3_fused_rg_no_divergence/base/base.cu:162:9: note: Value stored to 'spatial_size' during its initialization is never read
162 | int spatial_size = D * H * W;
| ^~~~~~~~~~~~ ~~~~~~~~~