← Back to Leaderboard

The AI CUDA Engineer 👷

68_Matmul_Min_Subtractoptimized_warp_coalesced_base

Level 2 • Task 68
import torch
import torch.nn as nn
import torch.nn.functional as F


def module_fn(
    x: torch.Tensor,
    linear_weight: torch.Tensor,
    linear_bias: torch.Tensor,
    constant: torch.Tensor,
) -> torch.Tensor:
    """
    Performs matrix multiplication, applies minimum with constant, and subtracts constant.

    Args:
        x (torch.Tensor): Input tensor of shape (batch_size, in_features)
        linear_weight (torch.Tensor): Weight matrix of shape (out_features, in_features)
        linear_bias (torch.Tensor): Bias vector of shape (out_features)
        constant (torch.Tensor): Scalar constant tensor

    Returns:
        torch.Tensor: Output tensor of shape (batch_size, out_features)
    """
    x = F.linear(x, linear_weight, linear_bias)
    x = torch.min(x, constant)
    x = x - constant
    return x


class Model(nn.Module):
    """
    Simple model that performs a matrix multiplication, applies minimum, and subtracts a constant.
    """

    def __init__(self, in_features, out_features, constant):
        super(Model, self).__init__()
        gemm = nn.Linear(in_features, out_features)
        self.linear_weight = nn.Parameter(gemm.weight)
        self.linear_bias = nn.Parameter(gemm.bias)
        self.constant = nn.Parameter(torch.tensor(constant))

    def forward(self, x, fn=module_fn):
        return fn(x, self.linear_weight, self.linear_bias, self.constant)


batch_size = 128
in_features = 10
out_features = 5
constant = 2.0


def get_inputs():
    return [torch.randn(batch_size, in_features)]


def get_init_inputs():
    return [in_features, out_features, constant]
import torch
import torch.nn as nn

class Model(nn.Module):
    """
    Simple model that performs a matrix multiplication, applies minimum, and subtracts a constant.
    """
    def __init__(self, in_features, out_features, constant):
        super(Model, self).__init__()
        self.linear = nn.Linear(in_features, out_features)
        self.constant = nn.Parameter(torch.tensor(constant))

    def forward(self, x):
        x = self.linear(x)
        x = torch.min(x, self.constant)
        x = x - self.constant
        return x

batch_size = 128
in_features = 10
out_features = 5
constant = 2.0

def get_inputs():
    return [torch.randn(batch_size, in_features)]

def get_init_inputs():
    return [in_features, out_features, constant]

Kernel Information

Related Kernels (Level 2, Task 68 • 68_Matmul_Min_Subtract)

Rank Kernel Name Runtime (ms) Speedup Native Speedup Compile
🥇 optimized_shared_memory_sync_base 0.01 2.95 1.92
🥇 optimized_thread_block_indexing_base_base 0.01 2.95 1.92
🥇 modularized_device_functions_base_base 0.01 2.95 1.92
🥇 aligned_memory_access_ldg_base_base 0.01 2.95 1.92
🥇 stride_loop_optimization_thread_base_base 0.01 2.95 1.92
🥇 tiled_shared_memory_matmul_base_base 0.01 2.95 1.92
🥇 unrolled_loop_optimization_base 0.01 2.95 1.92
🥇 optimized_warp_coalesced_base 0.01 2.95 1.92
🥇 grid_2d_mapping_base 0.01 2.95 1.92
🥇 aligned_memory_access_base_edit_1 0.01 2.95 1.92
🥇 modular_device_functions_edit_1 0.01 2.95 1.92
🥇 aligned_memory_access_base_base 0.01 2.95 1.92
🥇 grid_2d_mapping_edit_1 0.01 2.95 1.92
🥇 efficient_thread_block_mapping_base 0.01 2.95 1.92
🥇 stride_loop_optimization_base_base 0.01 2.95 1.92
🥇 tiled_gemm_thread_mapping_base 0.01 2.95 1.92
17 modular_device_functions_base 0.01 2.62 1.71
17 aligned_ldg_vectorized_edit_1 0.01 2.62 1.71
17 aligned_ldg_vectorized_base 0.01 2.62 1.71
17 branchless_min_dot_edit_1 0.01 2.62 1.71
#include <torch/extension.h>
#include <cuda.h>
#include <cuda_runtime.h>

#define WARP_SIZE 32

// Each block computes one dot product for (batch_idx, out_idx)
// ensuring memory coalescing by having threads in the warp load consecutive elements
// from the input row of x and the corresponding row of linear_weight.

__global__ void my_kernel(
    const float* x,
    const float* linear_weight,
    const float* linear_bias,
    const float* constant,
    float* y,
    int batch_size,
    int in_features,
    int out_features) {
    // Map each block to one output element for one batch element
    int index = blockIdx.x;  // index over (batch * out_features)
    int batch_idx = index / out_features;
    int out_idx = index % out_features;

    float sum = 0.0f;
    // Each thread in the block (warp) processes a portion of the dot product
    for (int i = threadIdx.x; i < in_features; i += blockDim.x) {
        // Coalesced read: threads in warp read consecutive elements
        float a = x[batch_idx * in_features + i];
        float b = linear_weight[out_idx * in_features + i];
        sum += a * b;
    }

    // Warp-level reduction using __shfl_down_sync
    for (int offset = WARP_SIZE / 2; offset > 0; offset /= 2) {
        sum += __shfl_down_sync(0xffffffff, sum, offset);
    }

    if (threadIdx.x == 0) {
        float result = sum + linear_bias[out_idx];
        float c = *constant;
        result = (result > c) ? c : result;
        y[batch_idx * out_features + out_idx] = result - c;
    }
}

// Pybind11 binding

torch::Tensor forward(
    torch::Tensor x,
    torch::Tensor linear_weight,
    torch::Tensor linear_bias,
    torch::Tensor constant) {
    TORCH_CHECK(x.is_cuda(), "x must be a CUDA tensor");
    TORCH_CHECK(linear_weight.is_cuda(), "linear_weight must be a CUDA tensor");
    TORCH_CHECK(linear_bias.is_cuda(), "linear_bias must be a CUDA tensor");
    TORCH_CHECK(constant.is_cuda(), "constant must be a CUDA tensor");

    int batch_size = x.size(0);
    int in_features = x.size(1);
    int out_features = linear_weight.size(0);

    auto y = torch::zeros({batch_size, out_features}, x.options());

    const float* x_ptr = x.data_ptr<float>();
    const float* weight_ptr = linear_weight.data_ptr<float>();
    const float* bias_ptr = linear_bias.data_ptr<float>();
    const float* constant_ptr = constant.data_ptr<float>();
    float* y_ptr = y.data_ptr<float>();

    // Launch one block per (batch element, out_feature) pair.
    int total_blocks = batch_size * out_features;
    int threads = WARP_SIZE;  // 32 threads per block to form a full warp

    my_kernel<<<total_blocks, threads>>>(
        x_ptr,
        weight_ptr,
        bias_ptr,
        constant_ptr,
        y_ptr,
        batch_size,
        in_features,
        out_features);

    return y;
}

PYBIND11_MODULE(TORCH_EXTENSION_NAME, m) {
    m.def("forward", &forward, "CUDA forward function");
}
Performance Metrics
Metric Value Unit Variance Samples
Executed Ipc Active 0.168 inst/cycle 0.000 5
Executed Ipc Elapsed 0.060 inst/cycle 0.000 5
Issue Slots Busy 4.354 % 0.058 5
Issued Ipc Active 0.176 inst/cycle 0.000 5
SM Busy 4.354 % 0.058 5
Memory Throughput 2381934524.468 byte/second 4245421091459995.000 5
Mem Busy 8.566 % 0.049 5
Max Bandwidth 4.624 % 0.019 5
L1/TEX Hit Rate 34.040 % 0.000 5
L2 Hit Rate 101.044 % 0.033 5
Mem Pipes Busy 2.066 % 0.003 5
Warp Cycles Per Issued Instruction 27.278 cycle 9.348 5
Warp Cycles Per Executed Instruction 28.696 cycle 10.330 5
Avg. Active Threads Per Warp 21.550 0.000 5
Avg. Not Predicated Off Threads Per Warp 19.360 0.000 5
Max Active Clusters 0.000 cluster 0.000 5
Max Cluster Size 8.000 block 0.000 5
Overall GPU Occupancy 0.000 % 0.000 5
Cluster Occupancy 0.000 % 0.000 5
Block Limit SM 32.000 block 0.000 5
Block Limit Registers 84.000 block 0.000 5
Block Limit Shared Mem 32.000 block 0.000 5
Block Limit Warps 64.000 block 0.000 5
Theoretical Active Warps per SM 32.000 warp 0.000 5
Theoretical Occupancy 50.000 % 0.000 5
Achieved Occupancy 7.408 % 0.000 5
Achieved Active Warps Per SM 4.740 warp 0.000 5
Analysis Rules
Rule Description
WRN HighPipeUtilization All compute pipelines are under-utilized. Either this kernel is very small or it doesn't issue enough warps per scheduler. Check the Launch Statistics and Scheduler Statistics sections for further details.
INF CPIStall Check the Warp Stall Sampling (All Cycles) table for the top stall locations in your source based on sampling data. The Kernel Profiling Guide (https://docs.nvidia.com/nsight-compute/ProfilingGuide/index.html#metrics-reference) provides more details on each stall reason.
WRN ThreadDivergence Instructions are executed in warps, which are groups of 32 threads. Optimal instruction throughput is achieved if all 32 threads of a warp execute the same instruction. The chosen launch configuration, early thread completion, and divergent flow control can significantly lower the number of active threads in a warp per cycle. This kernel achieves an average of 21.5 threads being active per cycle. This is further reduced to 19.4 threads per warp due to predication. The compiler may use predication to avoid an actual branch. Instead, all instructions are scheduled, but a per-thread condition code or predicate controls which threads execute the instructions. Try to avoid different execution paths within a warp when possible. In addition, ensure your kernel makes use of Independent Thread Scheduling, which allows a warp to reconverge after a data-dependent conditional block by explicitly calling __syncwarp().
WRN Occupancy This kernel's theoretical occupancy (50.0%) is limited by the number of blocks that can fit on the SM. This kernel's theoretical occupancy (50.0%) is limited by the required amount of shared memory. The difference between calculated theoretical (50.0%) and measured achieved occupancy (7.4%) can be the result of warp scheduling overheads or workload imbalances during the kernel execution. Load imbalances can occur between warps within a block as well as across blocks of the same kernel. See the CUDA Best Practices Guide (https://docs.nvidia.com/cuda/cuda-c-best-practices-guide/index.html#occupancy) for more details on optimizing occupancy.
Operation / Metric Value Unit
aten::to
CPU Time 512944.01 μs
Device Time 6.81 μs
Self CPU Time 64.42 μs
Self Device Time 0.00 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
aten::zeros
CPU Time 5930653.89 μs
Device Time 223219.45 μs
Self CPU Time 145258.12 μs
Self Device Time 0.00 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
aten::zero_
CPU Time 6280769.95 μs
Device Time 7989081.05 μs
Self CPU Time 343780.05 μs
Self Device Time 0.00 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
aten::fill_
CPU Time 5936994.10 μs
Device Time 7989081.05 μs
Self CPU Time 411470.40 μs
Self Device Time 7989081.05 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
cudaLaunchKernel
CPU Time 5922376.47 μs
Device Time 2933.11 μs
Self CPU Time 5922376.47 μs
Self Device Time 2933.11 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
my_kernel(float const*, float const*, float const*, float const*, float*, int, int, int)
CPU Time 0.00 μs
Device Time 341859.96 μs
Self CPU Time 0.00 μs
Self Device Time 341859.96 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
cudaEventRecord
CPU Time 269770.50 μs
Device Time 1288054.01 μs
Self CPU Time 269770.50 μs
Self Device Time 1288054.01 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
void at::native::vectorized_elementwise_kernel<4, at::native::FillFunctor<int>, at::detail::Array<char*, 1> >(int, at::native::FillFunctor<int>, at::detail::Array<char*, 1>)
CPU Time 0.00 μs
Device Time 7765861.60 μs
Self CPU Time 0.00 μs
Self Device Time 7765861.60 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
Status: Completed
45289 warnings generated when compiling for host.
Suppressed 45324 warnings (45277 in non-user code, 47 NOLINT).
Use -header-filter=.* to display errors from all non-system headers. Use -system-headers to display errors from system headers as well.
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_2/task_68/b5_s1_optimized_warp_coalesced/base/base.cu:12:5 bugprone-easily-swappable-parameters
12 | const float* x,
| ^~~~~~~~~~~~~~~
13 | const float* linear_weight,
| ~~~~~~~~~~~~~~~~~~~~~~~~~~~
14 | const float* linear_bias,
| ~~~~~~~~~~~~~~~~~~~~~~~~~
15 | const float* constant,
| ~~~~~~~~~~~~~~~~~~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_2/task_68/b5_s1_optimized_warp_coalesced/base/base.cu:12:18: note: the first parameter in the range is 'x'
12 | const float* x,
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_2/task_68/b5_s1_optimized_warp_coalesced/base/base.cu:15:18: note: the last parameter in the range is 'constant'
15 | const float* constant,
| ^~~~~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_2/task_68/b5_s1_optimized_warp_coalesced/base/base.cu:17:5: warning: 3 adjacent parameters of 'my_kernel' of similar type ('int') are easily swapped by mistake [bugprone-easily-swappable-parameters]
17 | int batch_size,
| ^~~~~~~~~~~~~~~
18 | int in_features,
| ~~~~~~~~~~~~~~~~
19 | int out_features) {
| ~~~~~~~~~~~~~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_2/task_68/b5_s1_optimized_warp_coalesced/base/base.cu:17:9: note: the first parameter in the range is 'batch_size'
17 | int batch_size,
| ^~~~~~~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_2/task_68/b5_s1_optimized_warp_coalesced/base/base.cu:19:9: note: the last parameter in the range is 'out_features'
19 | int out_features) {
| ^~~~~~~~~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_2/task_68/b5_s1_optimized_warp_coalesced/base/base.cu:21:17: warning: narrowing conversion from 'unsigned int' to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
21 | int index = blockIdx.x; // index over (batch * out_features)
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_2/task_68/b5_s1_optimized_warp_coalesced/base/base.cu:27:18: warning: narrowing conversion from 'unsigned int' to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
27 | for (int i = threadIdx.x; i < in_features; i += blockDim.x) {
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_2/task_68/b5_s1_optimized_warp_coalesced/base/base.cu:27:53: warning: narrowing conversion from 'unsigned int' to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
27 | for (int i = threadIdx.x; i < in_features; i += blockDim.x) {
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_2/task_68/b5_s1_optimized_warp_coalesced/base/base.cu:50:19: warning: the parameter 'x' is copied for each invocation but only used as a const reference; consider making it a const reference [performance-unnecessary-value-param]
50 | torch::Tensor x,
| ^
| const &
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_2/task_68/b5_s1_optimized_warp_coalesced/base/base.cu:51:19: warning: the parameter 'linear_weight' is copied for each invocation but only used as a const reference; consider making it a const reference [performance-unnecessary-value-param]
51 | torch::Tensor linear_weight,
| ^
| const &
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_2/task_68/b5_s1_optimized_warp_coalesced/base/base.cu:52:19: warning: the parameter 'linear_bias' is copied for each invocation but only used as a const reference; consider making it a const reference [performance-unnecessary-value-param]
52 | torch::Tensor linear_bias,
| ^
| const &
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_2/task_68/b5_s1_optimized_warp_coalesced/base/base.cu:53:19: warning: the parameter 'constant' is copied for each invocation but only used as a const reference; consider making it a const reference [performance-unnecessary-value-param]
53 | torch::Tensor constant) {
| ^
| const &
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_2/task_68/b5_s1_optimized_warp_coalesced/base/base.cu:59:22: warning: narrowing conversion from 'int64_t' (aka 'long') to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
59 | int batch_size = x.size(0);
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_2/task_68/b5_s1_optimized_warp_coalesced/base/base.cu:60:23: warning: narrowing conversion from 'int64_t' (aka 'long') to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
60 | int in_features = x.size(1);
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_2/task_68/b5_s1_optimized_warp_coalesced/base/base.cu:61:24: warning: narrowing conversion from 'int64_t' (aka 'long') to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
61 | int out_features = linear_weight.size(0);
| ^