← Back to Leaderboard

The AI CUDA Engineer 👷

68_Matmul_Min_Subtractgrid_2d_mapping_edit_1

Level 2 • Task 68
import torch
import torch.nn as nn
import torch.nn.functional as F


def module_fn(
    x: torch.Tensor,
    linear_weight: torch.Tensor,
    linear_bias: torch.Tensor,
    constant: torch.Tensor,
) -> torch.Tensor:
    """
    Performs matrix multiplication, applies minimum with constant, and subtracts constant.

    Args:
        x (torch.Tensor): Input tensor of shape (batch_size, in_features)
        linear_weight (torch.Tensor): Weight matrix of shape (out_features, in_features)
        linear_bias (torch.Tensor): Bias vector of shape (out_features)
        constant (torch.Tensor): Scalar constant tensor

    Returns:
        torch.Tensor: Output tensor of shape (batch_size, out_features)
    """
    x = F.linear(x, linear_weight, linear_bias)
    x = torch.min(x, constant)
    x = x - constant
    return x


class Model(nn.Module):
    """
    Simple model that performs a matrix multiplication, applies minimum, and subtracts a constant.
    """

    def __init__(self, in_features, out_features, constant):
        super(Model, self).__init__()
        gemm = nn.Linear(in_features, out_features)
        self.linear_weight = nn.Parameter(gemm.weight)
        self.linear_bias = nn.Parameter(gemm.bias)
        self.constant = nn.Parameter(torch.tensor(constant))

    def forward(self, x, fn=module_fn):
        return fn(x, self.linear_weight, self.linear_bias, self.constant)


batch_size = 128
in_features = 10
out_features = 5
constant = 2.0


def get_inputs():
    return [torch.randn(batch_size, in_features)]


def get_init_inputs():
    return [in_features, out_features, constant]
import torch
import torch.nn as nn

class Model(nn.Module):
    """
    Simple model that performs a matrix multiplication, applies minimum, and subtracts a constant.
    """
    def __init__(self, in_features, out_features, constant):
        super(Model, self).__init__()
        self.linear = nn.Linear(in_features, out_features)
        self.constant = nn.Parameter(torch.tensor(constant))

    def forward(self, x):
        x = self.linear(x)
        x = torch.min(x, self.constant)
        x = x - self.constant
        return x

batch_size = 128
in_features = 10
out_features = 5
constant = 2.0

def get_inputs():
    return [torch.randn(batch_size, in_features)]

def get_init_inputs():
    return [in_features, out_features, constant]

Kernel Information

Related Kernels (Level 2, Task 68 • 68_Matmul_Min_Subtract)

Rank Kernel Name Runtime (ms) Speedup Native Speedup Compile
🥇 optimized_shared_memory_sync_base 0.01 2.95 1.92
🥇 optimized_thread_block_indexing_base_base 0.01 2.95 1.92
🥇 modularized_device_functions_base_base 0.01 2.95 1.92
🥇 aligned_memory_access_ldg_base_base 0.01 2.95 1.92
🥇 stride_loop_optimization_thread_base_base 0.01 2.95 1.92
🥇 tiled_shared_memory_matmul_base_base 0.01 2.95 1.92
🥇 unrolled_loop_optimization_base 0.01 2.95 1.92
🥇 optimized_warp_coalesced_base 0.01 2.95 1.92
🥇 grid_2d_mapping_base 0.01 2.95 1.92
🥇 aligned_memory_access_base_edit_1 0.01 2.95 1.92
🥇 modular_device_functions_edit_1 0.01 2.95 1.92
🥇 aligned_memory_access_base_base 0.01 2.95 1.92
🥇 grid_2d_mapping_edit_1 0.01 2.95 1.92
🥇 efficient_thread_block_mapping_base 0.01 2.95 1.92
🥇 stride_loop_optimization_base_base 0.01 2.95 1.92
🥇 tiled_gemm_thread_mapping_base 0.01 2.95 1.92
17 modular_device_functions_base 0.01 2.62 1.71
17 aligned_ldg_vectorized_edit_1 0.01 2.62 1.71
17 aligned_ldg_vectorized_base 0.01 2.62 1.71
17 branchless_min_dot_edit_1 0.01 2.62 1.71
#include <torch/extension.h>
#include <cuda.h>
#include <cuda_runtime.h>

// 2D indexed kernel: Each thread computes one element of the output matrix.
__global__ void kernel_2d(
    const float* __restrict__ x,
    const float* __restrict__ linear_weight,
    const float* __restrict__ linear_bias,
    const float* __restrict__ constant,
    float* __restrict__ y,
    int batch_size,
    int in_features,
    int out_features) {

    // Map thread indices to matrix coordinates
    int o = blockIdx.x * blockDim.x + threadIdx.x; // output feature index
    int b = blockIdx.y * blockDim.y + threadIdx.y; // batch index

    if (b < batch_size && o < out_features) {
        float dot = 0.0f;
        int j = 0;
        // Unroll loop for better performance when in_features is divisible by 4
        for (; j <= in_features - 4; j += 4) {
            dot += x[b * in_features + j] * linear_weight[o * in_features + j];
            dot += x[b * in_features + j + 1] * linear_weight[o * in_features + j + 1];
            dot += x[b * in_features + j + 2] * linear_weight[o * in_features + j + 2];
            dot += x[b * in_features + j + 3] * linear_weight[o * in_features + j + 3];
        }
        // Handle remaining elements
        for (; j < in_features; j++) {
            dot += x[b * in_features + j] * linear_weight[o * in_features + j];
        }
        
        float bias = linear_bias[o];
        const float c = constant[0];
        dot = fminf(dot + bias, c) - c;
        y[b * out_features + o] = dot;
    }
}

// Forward function to launch the kernel
torch::Tensor forward(
    torch::Tensor x,
    torch::Tensor linear_weight,
    torch::Tensor linear_bias,
    torch::Tensor constant) {
    TORCH_CHECK(x.is_cuda(), "x must be a CUDA tensor");
    TORCH_CHECK(linear_weight.is_cuda(), "linear_weight must be a CUDA tensor");
    TORCH_CHECK(linear_bias.is_cuda(), "linear_bias must be a CUDA tensor");
    TORCH_CHECK(constant.is_cuda(), "constant must be a CUDA tensor");

    int batch_size = x.size(0);
    int in_features = x.size(1);
    int out_features = linear_weight.size(0);

    auto y = torch::zeros({batch_size, out_features}, x.options());

    const float* x_ptr = x.data_ptr<float>();
    const float* weight_ptr = linear_weight.data_ptr<float>();
    const float* bias_ptr = linear_bias.data_ptr<float>();
    const float* constant_ptr = constant.data_ptr<float>();
    float* y_ptr = y.data_ptr<float>();

    // Use a 2D block mapping to naturally cover the output matrix dimensions
    dim3 block(16, 16);
    dim3 grid((out_features + block.x - 1) / block.x, (batch_size + block.y - 1) / block.y);

    kernel_2d<<<grid, block>>>(
        x_ptr,
        weight_ptr,
        bias_ptr,
        constant_ptr,
        y_ptr,
        batch_size,
        in_features,
        out_features);

    return y;
}

PYBIND11_MODULE(TORCH_EXTENSION_NAME, m) {
    m.def("forward", &forward, "CUDA 2D grid indexed forward function");
}
Performance Metrics
Metric Value Unit Variance Samples
Executed Ipc Active 0.358 inst/cycle 0.001 5
Executed Ipc Elapsed 0.010 inst/cycle 0.000 5
Issue Slots Busy 9.572 % 0.366 5
Issued Ipc Active 0.384 inst/cycle 0.001 5
SM Busy 9.572 % 0.366 5
Memory Throughput 3066496466.170 byte/second 5477903584795605.000 5
Mem Busy 7.842 % 0.036 5
Max Bandwidth 4.056 % 0.009 5
L1/TEX Hit Rate 94.304 % 0.002 5
L2 Hit Rate 102.864 % 0.030 5
Mem Pipes Busy 0.194 % 0.000 5
Warp Cycles Per Issued Instruction 20.864 cycle 1.469 5
Warp Cycles Per Executed Instruction 22.286 cycle 1.673 5
Avg. Active Threads Per Warp 12.150 0.000 5
Avg. Not Predicated Off Threads Per Warp 11.660 0.000 5
Max Active Clusters 0.000 cluster 0.000 5
Max Cluster Size 8.000 block 0.000 5
Overall GPU Occupancy 0.000 % 0.000 5
Cluster Occupancy 0.000 % 0.000 5
Block Limit SM 32.000 block 0.000 5
Block Limit Registers 8.000 block 0.000 5
Block Limit Shared Mem 32.000 block 0.000 5
Block Limit Warps 8.000 block 0.000 5
Theoretical Active Warps per SM 64.000 warp 0.000 5
Theoretical Occupancy 100.000 % 0.000 5
Achieved Occupancy 12.452 % 0.000 5
Achieved Active Warps Per SM 7.970 warp 0.000 5
Analysis Rules
Rule Description
WRN HighPipeUtilization All compute pipelines are under-utilized. Either this kernel is very small or it doesn't issue enough warps per scheduler. Check the Launch Statistics and Scheduler Statistics sections for further details.
INF CPIStall Check the Warp Stall Sampling (All Cycles) table for the top stall locations in your source based on sampling data. The Kernel Profiling Guide (https://docs.nvidia.com/nsight-compute/ProfilingGuide/index.html#metrics-reference) provides more details on each stall reason.
WRN ThreadDivergence Instructions are executed in warps, which are groups of 32 threads. Optimal instruction throughput is achieved if all 32 threads of a warp execute the same instruction. The chosen launch configuration, early thread completion, and divergent flow control can significantly lower the number of active threads in a warp per cycle. This kernel achieves an average of 12.2 threads being active per cycle. This is further reduced to 11.7 threads per warp due to predication. The compiler may use predication to avoid an actual branch. Instead, all instructions are scheduled, but a per-thread condition code or predicate controls which threads execute the instructions. Try to avoid different execution paths within a warp when possible. In addition, ensure your kernel makes use of Independent Thread Scheduling, which allows a warp to reconverge after a data-dependent conditional block by explicitly calling __syncwarp().
WRN Occupancy This kernel's theoretical occupancy is not impacted by any block limit. The difference between calculated theoretical (100.0%) and measured achieved occupancy (12.4%) can be the result of warp scheduling overheads or workload imbalances during the kernel execution. Load imbalances can occur between warps within a block as well as across blocks of the same kernel. See the CUDA Best Practices Guide (https://docs.nvidia.com/cuda/cuda-c-best-practices-guide/index.html#occupancy) for more details on optimizing occupancy.
Operation / Metric Value Unit
aten::zeros
CPU Time 5562545.45 μs
Device Time 129793.28 μs
Self CPU Time 165718.40 μs
Self Device Time 0.00 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
aten::zero_
CPU Time 5890374.45 μs
Device Time 7697081.05 μs
Self CPU Time 358923.58 μs
Self Device Time 0.00 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
aten::fill_
CPU Time 5531452.84 μs
Device Time 7697081.05 μs
Self CPU Time 400276.39 μs
Self Device Time 7697081.05 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
cudaLaunchKernel
CPU Time 5496870.50 μs
Device Time 2574.12 μs
Self CPU Time 5496870.50 μs
Self Device Time 2574.12 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
kernel_2d(float const*, float const*, float const*, float const*, float*, int, int, int)
CPU Time 0.00 μs
Device Time 292257.60 μs
Self CPU Time 0.00 μs
Self Device Time 292257.60 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
cudaEventRecord
CPU Time 278151.81 μs
Device Time 332715.19 μs
Self CPU Time 278151.81 μs
Self Device Time 332715.19 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
void at::native::vectorized_elementwise_kernel<4, at::native::FillFunctor<int>, at::detail::Array<char*, 1> >(int, at::native::FillFunctor<int>, at::detail::Array<char*, 1>)
CPU Time 0.00 μs
Device Time 7567917.66 μs
Self CPU Time 0.00 μs
Self Device Time 7567917.66 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
cudaEventElapsedTime
CPU Time 338721.88 μs
Device Time 0.00 μs
Self CPU Time 338721.88 μs
Self Device Time 0.00 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
Status: Completed
45288 warnings generated when compiling for host.
Suppressed 45324 warnings (45277 in non-user code, 47 NOLINT).
Use -header-filter=.* to display errors from all non-system headers. Use -system-headers to display errors from system headers as well.
/home/robert_sakana_ai/llm_cuda/experiments/20250208_optimize_b5_s4_e1_sweep/level_2/task_68/b3_s2_grid_2d_mapping/edit_1/edit_1.cu:8:5 bugprone-easily-swappable-parameters
8 | const float* __restrict__ linear_weight,
| ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
9 | const float* __restrict__ linear_bias,
| ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
10 | const float* __restrict__ constant,
| ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250208_optimize_b5_s4_e1_sweep/level_2/task_68/b3_s2_grid_2d_mapping/edit_1/edit_1.cu:8:31: note: the first parameter in the range is 'linear_weight'
8 | const float* __restrict__ linear_weight,
| ^~~~~~~~~~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250208_optimize_b5_s4_e1_sweep/level_2/task_68/b3_s2_grid_2d_mapping/edit_1/edit_1.cu:10:31: note: the last parameter in the range is 'constant'
10 | const float* __restrict__ constant,
| ^~~~~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250208_optimize_b5_s4_e1_sweep/level_2/task_68/b3_s2_grid_2d_mapping/edit_1/edit_1.cu:12:5: warning: 2 adjacent parameters of 'kernel_2d' of similar type ('int') are easily swapped by mistake [bugprone-easily-swappable-parameters]
12 | int batch_size,
| ^~~~~~~~~~~~~~~
13 | int in_features,
| ~~~~~~~~~~~~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250208_optimize_b5_s4_e1_sweep/level_2/task_68/b3_s2_grid_2d_mapping/edit_1/edit_1.cu:12:9: note: the first parameter in the range is 'batch_size'
12 | int batch_size,
| ^~~~~~~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250208_optimize_b5_s4_e1_sweep/level_2/task_68/b3_s2_grid_2d_mapping/edit_1/edit_1.cu:13:9: note: the last parameter in the range is 'in_features'
13 | int in_features,
| ^~~~~~~~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250208_optimize_b5_s4_e1_sweep/level_2/task_68/b3_s2_grid_2d_mapping/edit_1/edit_1.cu:17:13: warning: narrowing conversion from 'unsigned int' to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
17 | int o = blockIdx.x * blockDim.x + threadIdx.x; // output feature index
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250208_optimize_b5_s4_e1_sweep/level_2/task_68/b3_s2_grid_2d_mapping/edit_1/edit_1.cu:18:13: warning: narrowing conversion from 'unsigned int' to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
18 | int b = blockIdx.y * blockDim.y + threadIdx.y; // batch index
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250208_optimize_b5_s4_e1_sweep/level_2/task_68/b3_s2_grid_2d_mapping/edit_1/edit_1.cu:44:19: warning: the parameter 'x' is copied for each invocation but only used as a const reference; consider making it a const reference [performance-unnecessary-value-param]
44 | torch::Tensor x,
| ^
| const &
/home/robert_sakana_ai/llm_cuda/experiments/20250208_optimize_b5_s4_e1_sweep/level_2/task_68/b3_s2_grid_2d_mapping/edit_1/edit_1.cu:45:19: warning: the parameter 'linear_weight' is copied for each invocation but only used as a const reference; consider making it a const reference [performance-unnecessary-value-param]
45 | torch::Tensor linear_weight,
| ^
| const &
/home/robert_sakana_ai/llm_cuda/experiments/20250208_optimize_b5_s4_e1_sweep/level_2/task_68/b3_s2_grid_2d_mapping/edit_1/edit_1.cu:46:19: warning: the parameter 'linear_bias' is copied for each invocation but only used as a const reference; consider making it a const reference [performance-unnecessary-value-param]
46 | torch::Tensor linear_bias,
| ^
| const &
/home/robert_sakana_ai/llm_cuda/experiments/20250208_optimize_b5_s4_e1_sweep/level_2/task_68/b3_s2_grid_2d_mapping/edit_1/edit_1.cu:47:19: warning: the parameter 'constant' is copied for each invocation but only used as a const reference; consider making it a const reference [performance-unnecessary-value-param]
47 | torch::Tensor constant) {
| ^
| const &
/home/robert_sakana_ai/llm_cuda/experiments/20250208_optimize_b5_s4_e1_sweep/level_2/task_68/b3_s2_grid_2d_mapping/edit_1/edit_1.cu:53:22: warning: narrowing conversion from 'int64_t' (aka 'long') to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
53 | int batch_size = x.size(0);
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250208_optimize_b5_s4_e1_sweep/level_2/task_68/b3_s2_grid_2d_mapping/edit_1/edit_1.cu:54:23: warning: narrowing conversion from 'int64_t' (aka 'long') to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
54 | int in_features = x.size(1);
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250208_optimize_b5_s4_e1_sweep/level_2/task_68/b3_s2_grid_2d_mapping/edit_1/edit_1.cu:55:24: warning: narrowing conversion from 'int64_t' (aka 'long') to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
55 | int out_features = linear_weight.size(0);
| ^