← Back to Leaderboard

The AI CUDA Engineer 👷

68_Matmul_Min_Subtractaligned_ldg_vectorized_edit_1

Level 2 • Task 68
import torch
import torch.nn as nn
import torch.nn.functional as F


def module_fn(
    x: torch.Tensor,
    linear_weight: torch.Tensor,
    linear_bias: torch.Tensor,
    constant: torch.Tensor,
) -> torch.Tensor:
    """
    Performs matrix multiplication, applies minimum with constant, and subtracts constant.

    Args:
        x (torch.Tensor): Input tensor of shape (batch_size, in_features)
        linear_weight (torch.Tensor): Weight matrix of shape (out_features, in_features)
        linear_bias (torch.Tensor): Bias vector of shape (out_features)
        constant (torch.Tensor): Scalar constant tensor

    Returns:
        torch.Tensor: Output tensor of shape (batch_size, out_features)
    """
    x = F.linear(x, linear_weight, linear_bias)
    x = torch.min(x, constant)
    x = x - constant
    return x


class Model(nn.Module):
    """
    Simple model that performs a matrix multiplication, applies minimum, and subtracts a constant.
    """

    def __init__(self, in_features, out_features, constant):
        super(Model, self).__init__()
        gemm = nn.Linear(in_features, out_features)
        self.linear_weight = nn.Parameter(gemm.weight)
        self.linear_bias = nn.Parameter(gemm.bias)
        self.constant = nn.Parameter(torch.tensor(constant))

    def forward(self, x, fn=module_fn):
        return fn(x, self.linear_weight, self.linear_bias, self.constant)


batch_size = 128
in_features = 10
out_features = 5
constant = 2.0


def get_inputs():
    return [torch.randn(batch_size, in_features)]


def get_init_inputs():
    return [in_features, out_features, constant]
import torch
import torch.nn as nn

class Model(nn.Module):
    """
    Simple model that performs a matrix multiplication, applies minimum, and subtracts a constant.
    """
    def __init__(self, in_features, out_features, constant):
        super(Model, self).__init__()
        self.linear = nn.Linear(in_features, out_features)
        self.constant = nn.Parameter(torch.tensor(constant))

    def forward(self, x):
        x = self.linear(x)
        x = torch.min(x, self.constant)
        x = x - self.constant
        return x

batch_size = 128
in_features = 10
out_features = 5
constant = 2.0

def get_inputs():
    return [torch.randn(batch_size, in_features)]

def get_init_inputs():
    return [in_features, out_features, constant]

Kernel Information

Related Kernels (Level 2, Task 68 • 68_Matmul_Min_Subtract)

Rank Kernel Name Runtime (ms) Speedup Native Speedup Compile
🥇 optimized_shared_memory_sync_base 0.01 2.95 1.92
🥇 optimized_thread_block_indexing_base_base 0.01 2.95 1.92
🥇 modularized_device_functions_base_base 0.01 2.95 1.92
🥇 aligned_memory_access_ldg_base_base 0.01 2.95 1.92
🥇 stride_loop_optimization_thread_base_base 0.01 2.95 1.92
🥇 tiled_shared_memory_matmul_base_base 0.01 2.95 1.92
🥇 unrolled_loop_optimization_base 0.01 2.95 1.92
🥇 optimized_warp_coalesced_base 0.01 2.95 1.92
🥇 grid_2d_mapping_base 0.01 2.95 1.92
🥇 aligned_memory_access_base_edit_1 0.01 2.95 1.92
🥇 modular_device_functions_edit_1 0.01 2.95 1.92
🥇 aligned_memory_access_base_base 0.01 2.95 1.92
🥇 grid_2d_mapping_edit_1 0.01 2.95 1.92
🥇 efficient_thread_block_mapping_base 0.01 2.95 1.92
🥇 stride_loop_optimization_base_base 0.01 2.95 1.92
🥇 tiled_gemm_thread_mapping_base 0.01 2.95 1.92
17 modular_device_functions_base 0.01 2.62 1.71
17 aligned_ldg_vectorized_edit_1 0.01 2.62 1.71
17 aligned_ldg_vectorized_base 0.01 2.62 1.71
17 branchless_min_dot_edit_1 0.01 2.62 1.71
#include <torch/extension.h>
#include <cuda.h>
#include <cuda_runtime.h>

// Kernel using __ldg() for read-only accesses and vectorized loads using float4 to align to 128-bit boundaries
__global__ void kernel_aligned_ldg(
    const float* __restrict__ x,
    const float* __restrict__ linear_weight,
    const float* __restrict__ linear_bias,
    const float* __restrict__ constant,
    float* __restrict__ y,
    int batch_size,
    int in_features,
    int out_features) {

    int index = blockIdx.x * blockDim.x + threadIdx.x; // overall thread index
    int total_elements = batch_size * out_features;
    if (index < total_elements) {
        int batch_idx = index / out_features; // row
        int out_idx   = index % out_features;  // column
        float sum = 0.0f;

        // Ensure in_features is divisible by 4 for vectorized load, otherwise fallback to scalar loads
        if ((in_features & 3) == 0) {
            int numVec = in_features >> 2; // equivalent to in_features / 4
            // reinterpret pointers as float4 pointers for aligned 128-bit access
            const float4* x_vec = reinterpret_cast<const float4*>(x);
            const float4* w_vec = reinterpret_cast<const float4*>(linear_weight);
            
            int x_offset = batch_idx * numVec;   // start offset for this row of x
            int w_offset = out_idx   * numVec;      // start offset for the corresponding weight row
            
            #pragma unroll
            for (int k = 0; k < numVec; k++) {
                // Use __ldg to load from read-only memory
                float4 a = __ldg(&x_vec[x_offset + k]);
                float4 b = __ldg(&w_vec[w_offset + k]);
                sum += a.x * b.x + a.y * b.y + a.z * b.z + a.w * b.w;
            }
        } else {
            // Fallback to scalar loads if in_features is not a multiple of 4
            int offset_x = batch_idx * in_features;
            int offset_w = out_idx * in_features;
            for (int j = 0; j < in_features; j++) {
                float xv = __ldg(&x[offset_x + j]);
                float wv = __ldg(&linear_weight[offset_w + j]);
                sum += xv * wv;
            }
        }
        
        // Add bias and apply min-subtract constant operation
        sum += __ldg(&linear_bias[out_idx]);
        float c = __ldg(constant);
        sum = (sum > c) ? c : sum;
        y[index] = sum - c;
    }
}

// Forward function to launch the CUDA kernel
torch::Tensor forward(
    torch::Tensor x,
    torch::Tensor linear_weight,
    torch::Tensor linear_bias,
    torch::Tensor constant) {

    TORCH_CHECK(x.is_cuda(), "x must be a CUDA tensor");
    TORCH_CHECK(linear_weight.is_cuda(), "linear_weight must be a CUDA tensor");
    TORCH_CHECK(linear_bias.is_cuda(), "linear_bias must be a CUDA tensor");
    TORCH_CHECK(constant.is_cuda(), "constant must be a CUDA tensor");

    int batch_size = x.size(0);
    int in_features = x.size(1);
    int out_features = linear_weight.size(0);

    auto y = torch::zeros({batch_size, out_features}, x.options());

    const float* x_ptr = x.data_ptr<float>();
    const float* weight_ptr = linear_weight.data_ptr<float>();
    const float* bias_ptr = linear_bias.data_ptr<float>();
    const float* constant_ptr = constant.data_ptr<float>();
    float* y_ptr = y.data_ptr<float>();

    int total_elements = batch_size * out_features;
    int threads = 256;
    int blocks = (total_elements + threads - 1) / threads;

    kernel_aligned_ldg<<<blocks, threads>>>(
        x_ptr,
        weight_ptr,
        bias_ptr,
        constant_ptr,
        y_ptr,
        batch_size,
        in_features,
        out_features);

    return y;
}

PYBIND11_MODULE(TORCH_EXTENSION_NAME, m) {
    m.def("forward", &forward, "CUDA forward function");
}
Performance Metrics
Metric Value Unit Variance Samples
Executed Ipc Active 0.320 inst/cycle 0.000 5
Executed Ipc Elapsed 0.000 inst/cycle 0.000 5
Issue Slots Busy 8.402 % 0.220 5
Issued Ipc Active 0.336 inst/cycle 0.000 5
SM Busy 8.402 % 0.220 5
Memory Throughput 3170477719.954 byte/second 693528729681947.000 5
Mem Busy 7.686 % 0.008 5
Max Bandwidth 3.988 % 0.003 5
L1/TEX Hit Rate 89.410 % 0.000 5
L2 Hit Rate 103.108 % 0.250 5
Mem Pipes Busy 0.070 % 0.000 5
Warp Cycles Per Issued Instruction 20.138 cycle 0.873 5
Warp Cycles Per Executed Instruction 21.062 cycle 0.958 5
Avg. Active Threads Per Warp 32.000 0.000 5
Avg. Not Predicated Off Threads Per Warp 29.020 0.000 5
Max Active Clusters 0.000 cluster 0.000 5
Max Cluster Size 8.000 block 0.000 5
Overall GPU Occupancy 0.000 % 0.000 5
Cluster Occupancy 0.000 % 0.000 5
Block Limit SM 32.000 block 0.000 5
Block Limit Registers 6.000 block 0.000 5
Block Limit Shared Mem 32.000 block 0.000 5
Block Limit Warps 8.000 block 0.000 5
Theoretical Active Warps per SM 48.000 warp 0.000 5
Theoretical Occupancy 75.000 % 0.000 5
Achieved Occupancy 11.062 % 0.006 5
Achieved Active Warps Per SM 7.082 warp 0.003 5
Analysis Rules
Rule Description
WRN HighPipeUtilization All compute pipelines are under-utilized. Either this kernel is very small or it doesn't issue enough warps per scheduler. Check the Launch Statistics and Scheduler Statistics sections for further details.
INF CPIStall Check the Warp Stall Sampling (All Cycles) table for the top stall locations in your source based on sampling data. The Kernel Profiling Guide (https://docs.nvidia.com/nsight-compute/ProfilingGuide/index.html#metrics-reference) provides more details on each stall reason.
WRN Occupancy This kernel's theoretical occupancy (75.0%) is limited by the number of required registers. The difference between calculated theoretical (75.0%) and measured achieved occupancy (11.2%) can be the result of warp scheduling overheads or workload imbalances during the kernel execution. Load imbalances can occur between warps within a block as well as across blocks of the same kernel. See the CUDA Best Practices Guide (https://docs.nvidia.com/cuda/cuda-c-best-practices-guide/index.html#occupancy) for more details on optimizing occupancy.
Operation / Metric Value Unit
aten::zeros
CPU Time 5679620.79 μs
Device Time 134538.56 μs
Self CPU Time 158484.29 μs
Self Device Time 0.00 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
aten::zero_
CPU Time 6014739.89 μs
Device Time 8010530.71 μs
Self CPU Time 371870.66 μs
Self Device Time 0.00 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
aten::fill_
CPU Time 5642871.15 μs
Device Time 8010530.71 μs
Self CPU Time 414842.99 μs
Self Device Time 8010530.71 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
cudaLaunchKernel
CPU Time 5605827.25 μs
Device Time 2730.87 μs
Self CPU Time 5605827.25 μs
Self Device Time 2730.87 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
kernel_aligned_ldg(float const*, float const*, float const*, float const*, float*, int, int, int)
CPU Time 0.00 μs
Device Time 271278.62 μs
Self CPU Time 0.00 μs
Self Device Time 271278.62 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
cudaEventRecord
CPU Time 286654.92 μs
Device Time 346109.44 μs
Self CPU Time 286654.92 μs
Self Device Time 346109.44 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
void at::native::vectorized_elementwise_kernel<4, at::native::FillFunctor<int>, at::detail::Array<char*, 1> >(int, at::native::FillFunctor<int>, at::detail::Array<char*, 1>)
CPU Time 0.00 μs
Device Time 7876621.15 μs
Self CPU Time 0.00 μs
Self Device Time 7876621.15 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
cudaEventElapsedTime
CPU Time 329333.87 μs
Device Time 0.00 μs
Self CPU Time 329333.87 μs
Self Device Time 0.00 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
Status: Completed
45287 warnings generated when compiling for host.
Suppressed 45324 warnings (45277 in non-user code, 47 NOLINT).
Use -header-filter=.* to display errors from all non-system headers. Use -system-headers to display errors from system headers as well.
/home/robert_sakana_ai/llm_cuda/experiments/20250208_optimize_b5_s4_e1_sweep/level_2/task_68/b5_s0_aligned_ldg_vectorized/edit_1/edit_1.cu:7:5 bugprone-easily-swappable-parameters
7 | const float* __restrict__ x,
| ^~~~~~~~~~~~~~~~~~~~~~~~~~~~
8 | const float* __restrict__ linear_weight,
| ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
9 | const float* __restrict__ linear_bias,
| ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
10 | const float* __restrict__ constant,
| ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250208_optimize_b5_s4_e1_sweep/level_2/task_68/b5_s0_aligned_ldg_vectorized/edit_1/edit_1.cu:7:31: note: the first parameter in the range is 'x'
7 | const float* __restrict__ x,
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250208_optimize_b5_s4_e1_sweep/level_2/task_68/b5_s0_aligned_ldg_vectorized/edit_1/edit_1.cu:10:31: note: the last parameter in the range is 'constant'
10 | const float* __restrict__ constant,
| ^~~~~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250208_optimize_b5_s4_e1_sweep/level_2/task_68/b5_s0_aligned_ldg_vectorized/edit_1/edit_1.cu:12:5: warning: 2 adjacent parameters of 'kernel_aligned_ldg' of similar type ('int') are easily swapped by mistake [bugprone-easily-swappable-parameters]
12 | int batch_size,
| ^~~~~~~~~~~~~~~
13 | int in_features,
| ~~~~~~~~~~~~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250208_optimize_b5_s4_e1_sweep/level_2/task_68/b5_s0_aligned_ldg_vectorized/edit_1/edit_1.cu:12:9: note: the first parameter in the range is 'batch_size'
12 | int batch_size,
| ^~~~~~~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250208_optimize_b5_s4_e1_sweep/level_2/task_68/b5_s0_aligned_ldg_vectorized/edit_1/edit_1.cu:13:9: note: the last parameter in the range is 'in_features'
13 | int in_features,
| ^~~~~~~~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250208_optimize_b5_s4_e1_sweep/level_2/task_68/b5_s0_aligned_ldg_vectorized/edit_1/edit_1.cu:16:17: warning: narrowing conversion from 'unsigned int' to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
16 | int index = blockIdx.x * blockDim.x + threadIdx.x; // overall thread index
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250208_optimize_b5_s4_e1_sweep/level_2/task_68/b5_s0_aligned_ldg_vectorized/edit_1/edit_1.cu:61:19: warning: the parameter 'x' is copied for each invocation but only used as a const reference; consider making it a const reference [performance-unnecessary-value-param]
61 | torch::Tensor x,
| ^
| const &
/home/robert_sakana_ai/llm_cuda/experiments/20250208_optimize_b5_s4_e1_sweep/level_2/task_68/b5_s0_aligned_ldg_vectorized/edit_1/edit_1.cu:62:19: warning: the parameter 'linear_weight' is copied for each invocation but only used as a const reference; consider making it a const reference [performance-unnecessary-value-param]
62 | torch::Tensor linear_weight,
| ^
| const &
/home/robert_sakana_ai/llm_cuda/experiments/20250208_optimize_b5_s4_e1_sweep/level_2/task_68/b5_s0_aligned_ldg_vectorized/edit_1/edit_1.cu:63:19: warning: the parameter 'linear_bias' is copied for each invocation but only used as a const reference; consider making it a const reference [performance-unnecessary-value-param]
63 | torch::Tensor linear_bias,
| ^
| const &
/home/robert_sakana_ai/llm_cuda/experiments/20250208_optimize_b5_s4_e1_sweep/level_2/task_68/b5_s0_aligned_ldg_vectorized/edit_1/edit_1.cu:64:19: warning: the parameter 'constant' is copied for each invocation but only used as a const reference; consider making it a const reference [performance-unnecessary-value-param]
64 | torch::Tensor constant) {
| ^
| const &
/home/robert_sakana_ai/llm_cuda/experiments/20250208_optimize_b5_s4_e1_sweep/level_2/task_68/b5_s0_aligned_ldg_vectorized/edit_1/edit_1.cu:71:22: warning: narrowing conversion from 'int64_t' (aka 'long') to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
71 | int batch_size = x.size(0);
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250208_optimize_b5_s4_e1_sweep/level_2/task_68/b5_s0_aligned_ldg_vectorized/edit_1/edit_1.cu:72:23: warning: narrowing conversion from 'int64_t' (aka 'long') to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
72 | int in_features = x.size(1);
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250208_optimize_b5_s4_e1_sweep/level_2/task_68/b5_s0_aligned_ldg_vectorized/edit_1/edit_1.cu:73:24: warning: narrowing conversion from 'int64_t' (aka 'long') to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
73 | int out_features = linear_weight.size(0);
| ^