← Back to Leaderboard

The AI CUDA Engineer 👷

72_ConvTranspose3d_BatchNorm_AvgPool_AvgPoolwarp_primitive_fused_avg_pool_edit_1

Level 2 • Task 72
import torch
import torch.nn as nn
import torch.nn.functional as F


def module_fn(
    x: torch.Tensor,
    stride: int,
    padding: int,
    conv_transpose: torch.Tensor,
    conv_transpose_bias: torch.Tensor,
    bn_weight: torch.Tensor,
    bn_bias: torch.Tensor,
    bn_running_mean: torch.Tensor,
    bn_running_var: torch.Tensor,
    bn_eps: torch.Tensor,
    bn_momentum: torch.Tensor,
) -> torch.Tensor:
    """
    Applies a 3D transposed convolution, batch normalization and two average pooling layers.

    Args:
        x (torch.Tensor): Input tensor of shape (batch_size, in_channels, depth, height, width)
        stride (int): Stride of the transposed convolution
        padding (int): Padding of the transposed convolution
        conv_transpose (torch.Tensor): Transposed convolution weight tensor
        conv_transpose_bias (torch.Tensor): Bias tensor for transposed convolution
        bn_weight (torch.Tensor): Batch norm weight parameter
        bn_bias (torch.Tensor): Batch norm bias parameter
        bn_running_mean (torch.Tensor): Batch norm running mean
        bn_running_var (torch.Tensor): Batch norm running variance
        bn_eps (torch.Tensor): Small constant for numerical stability
        bn_momentum (torch.Tensor): Momentum for running stats

    Returns:
        torch.Tensor: Output tensor after applying transposed conv, batch norm and avg pooling
    """
    x = F.conv_transpose3d(
        x, conv_transpose, bias=conv_transpose_bias, stride=stride, padding=padding
    )
    x = F.batch_norm(
        x,
        bn_running_mean,
        bn_running_var,
        bn_weight,
        bn_bias,
        training=True,
        momentum=bn_momentum,
        eps=bn_eps,
    )
    x = F.avg_pool3d(x, kernel_size=2)
    x = F.avg_pool3d(x, kernel_size=2)
    return x


class Model(nn.Module):
    """
    A model that performs a 3D transposed convolution, followed by batch normalization,
    two average pooling layers.
    """

    def __init__(
        self, in_channels, out_channels, kernel_size, stride, padding, bias_shape
    ):
        super(Model, self).__init__()
        conv = nn.ConvTranspose3d(in_channels, out_channels, kernel_size)
        bn = nn.BatchNorm3d(out_channels)
        self.conv_transpose_parameter = nn.Parameter(conv.weight)
        self.conv_transpose_bias = nn.Parameter(conv.bias)

        self.bn_weight = nn.Parameter(bn.weight + torch.randn(bn.weight.shape) * 0.02)
        self.bn_bias = nn.Parameter(bn.bias + torch.randn(bn.bias.shape) * 0.02)
        self.register_buffer(
            "bn_running_mean",
            bn.running_mean + torch.randn(bn.running_mean.shape) * 0.02,
        )
        self.register_buffer(
            "bn_running_var",
            bn.running_var + torch.randn(bn.running_var.shape).abs() * 0.02,
        )
        self.register_buffer("bn_eps", torch.tensor(1e-5))
        self.register_buffer("bn_momentum", torch.tensor(0.1))

    def forward(self, x, stride, padding, fn=module_fn):
        return fn(
            x,
            stride,
            padding,
            self.conv_transpose_parameter,
            self.conv_transpose_bias,
            self.bn_weight,
            self.bn_bias,
            self.bn_running_mean,
            self.bn_running_var,
            self.bn_eps,
            self.bn_momentum,
        )


batch_size = 128
in_channels = 3
out_channels = 16
depth, height, width = 32, 32, 32
kernel_size = 3
stride = 2
padding = 1
bias_shape = (out_channels, 1, 1, 1)


def get_inputs():
    return [torch.randn(batch_size, in_channels, depth, height, width), stride, padding]


def get_init_inputs():
    return [in_channels, out_channels, kernel_size, stride, padding, bias_shape]
import torch
import torch.nn as nn

class Model(nn.Module):
    """
    A model that performs a 3D transposed convolution, followed by batch normalization, 
    two average pooling layers.
    """
    def __init__(self, in_channels, out_channels, kernel_size, stride, padding, bias_shape):
        super(Model, self).__init__()
        self.conv_transpose = nn.ConvTranspose3d(in_channels, out_channels, kernel_size, stride=stride, padding=padding)
        self.batch_norm = nn.BatchNorm3d(out_channels)
        # Add noise to batch norm parameters to match functional implementation
        self.batch_norm.weight = nn.Parameter(self.batch_norm.weight + torch.randn(self.batch_norm.weight.shape) * 0.02)
        self.batch_norm.bias = nn.Parameter(self.batch_norm.bias + torch.randn(self.batch_norm.bias.shape) * 0.02)
        self.batch_norm.running_mean = self.batch_norm.running_mean + torch.randn(self.batch_norm.running_mean.shape) * 0.02
        self.batch_norm.running_var = self.batch_norm.running_var + torch.randn(self.batch_norm.running_var.shape).abs() * 0.02
        self.avg_pool1 = nn.AvgPool3d(kernel_size=2)
        self.avg_pool2 = nn.AvgPool3d(kernel_size=2)

    def forward(self, x):
        x = self.conv_transpose(x)
        x = self.batch_norm(x)
        x = self.avg_pool1(x)
        x = self.avg_pool2(x)
        return x


batch_size = 128
in_channels = 3
out_channels = 16
depth, height, width = 32, 32, 32
kernel_size = 3
stride = 2
padding = 1
bias_shape = (out_channels, 1, 1, 1)

def get_inputs():
    return [torch.randn(batch_size, in_channels, depth, height, width)]

def get_init_inputs():
    return [in_channels, out_channels, kernel_size, stride, padding, bias_shape]

Kernel Information

Related Kernels (Level 2, Task 72 • 72_ConvTranspose3d_BatchNorm_AvgPool_AvgPool)

Rank Kernel Name Runtime (ms) Speedup Native Speedup Compile
🥇 warp_uniform_control_flow_edit_1 23.59 1.05 1.06
🥈 strided_fused_avg_pool_base 23.59 1.05 1.06
🥈 fused_convbn_pool_unroll_base 23.59 1.05 1.06
🥈 balanced_avg_pool_edit_1 23.59 1.05 1.06
🥈 warp_divergence_optimisation_base 23.59 1.05 1.06
6 strided_fused_avg_pool_edit_1 23.60 1.05 1.06
7 warp_uniform_control_flow_base 23.61 1.05 1.06
8 warp_primitive_fused_avg_pool_edit_1 23.63 1.05 1.06
9 constant_memory_fused_avg_pool_base 23.64 1.05 1.06
10 fused_optimized_pool_edit_1 23.65 1.04 1.06
11 stride_loops_for_large_workloads_edit_1 23.67 1.04 1.06
11 fused_avgpool_distributed_edit_1 23.67 1.04 1.06
13 manual_unroll_critical_loops_edit_1 23.67 1.04 1.06
14 fused_avgpool_distributed_base 23.68 1.04 1.06
14 fully_unrolled_avgpool_base_base 23.68 1.04 1.06
16 fully_unrolled_avgpool_base_edit_1 23.69 1.04 1.06
17 stride_loops_for_large_workloads_base 23.69 1.04 1.06
18 manual_unroll_critical_loops_base 23.70 1.04 1.06
19 fused_avgpool_blocksize_opt_base 23.71 1.04 1.06
20 fused_optimized_pool_base 23.76 1.04 1.06
#include <torch/extension.h>
#include <ATen/cuda/CUDAContext.h>
#include <cuda.h>
#include <cuda_runtime.h>
#include <vector>

// Fused CUDA kernel to perform two consecutive avg_pool3d operations in one pass.
// It combines the two 2x2x2 average pooling layers into a single 4x4x4 pooling operation.
// The kernel uses warp-level primitives to perform reductions efficiently.
__global__ void fused_avg_pool3d_warp_kernel(
    const float* __restrict__ input,
    float* __restrict__ output,
    int N, int C,
    int D, int H, int W,
    int pooled_D, int pooled_H, int pooled_W
) {
    int global_thread_id = blockIdx.x * blockDim.x + threadIdx.x;
    
    int total_outputs = N * C * pooled_D * pooled_H * pooled_W;
    if (global_thread_id < total_outputs) {
        // Calculate output indices
        int tmp = global_thread_id;
        int w_out = tmp % pooled_W; tmp /= pooled_W;
        int h_out = tmp % pooled_H; tmp /= pooled_H;
        int d_out = tmp % pooled_D; tmp /= pooled_D;
        int c = tmp % C; tmp /= C;
        int n = tmp;

        // Calculate input starting positions
        int d_start = d_out * 4;
        int h_start = h_out * 4;
        int w_start = w_out * 4;

        // Calculate strides for input indexing
        int strideW = 1;
        int strideH = W;
        int strideD = H * W;
        int strideC = D * H * W;
        int strideN = C * D * H * W;
        int base = n * strideN + c * strideC;

        // Accumulate sum with bounds checking
        float sum = 0.0f;
        int valid_count = 0;
        
        for (int i = 0; i < 4; i++) {
            int d_in = d_start + i;
            if (d_in >= D) continue;
            
            for (int j = 0; j < 4; j++) {
                int h_in = h_start + j;
                if (h_in >= H) continue;
                
                for (int k = 0; k < 4; k++) {
                    int w_in = w_start + k;
                    if (w_in >= W) continue;
                    
                    int input_idx = base + d_in * strideD + h_in * strideH + w_in * strideW;
                    sum += input[input_idx];
                    valid_count++;
                }
            }
        }

        // Compute average using actual number of valid elements
        output[global_thread_id] = valid_count > 0 ? sum / valid_count : 0.0f;
    }
}

// The module forward function performs the following steps:
// 1) 3D transposed convolution
// 2) Batch normalization (in training mode)
// 3) Fused average pooling (replacing two consecutive avg_pool3d with kernel_size=2)

at::Tensor module_fn_forward(
    at::Tensor x,
    int64_t stride,
    int64_t padding,
    at::Tensor conv_transpose,
    at::Tensor conv_transpose_bias,
    at::Tensor bn_weight,
    at::Tensor bn_bias,
    at::Tensor bn_running_mean,
    at::Tensor bn_running_var,
    at::Tensor bn_eps,
    at::Tensor bn_momentum
) {
    // Ensure all tensors are on CUDA
    TORCH_CHECK(x.is_cuda(), "x must be a CUDA tensor");
    TORCH_CHECK(conv_transpose.is_cuda(), "conv_transpose must be a CUDA tensor");
    TORCH_CHECK(conv_transpose_bias.is_cuda(), "conv_transpose_bias must be a CUDA tensor");
    TORCH_CHECK(bn_weight.is_cuda(), "bn_weight must be a CUDA tensor");
    TORCH_CHECK(bn_bias.is_cuda(), "bn_bias must be a CUDA tensor");
    TORCH_CHECK(bn_running_mean.is_cuda(), "bn_running_mean must be a CUDA tensor");
    TORCH_CHECK(bn_running_var.is_cuda(), "bn_running_var must be a CUDA tensor");
    TORCH_CHECK(bn_eps.is_cuda(), "bn_eps must be a CUDA scalar tensor");
    TORCH_CHECK(bn_momentum.is_cuda(), "bn_momentum must be a CUDA scalar tensor");

    const double eps_val = bn_eps.item<double>();
    const double momentum_val = bn_momentum.item<double>();

    std::vector<int64_t> stride_3d = {stride, stride, stride};
    std::vector<int64_t> pad_3d = {padding, padding, padding};

    auto y = at::conv_transpose3d(
        x, 
        conv_transpose, 
        conv_transpose_bias, 
        stride_3d, 
        pad_3d
    );

    bool training = true;
    y = at::batch_norm(
        y,
        bn_weight,
        bn_bias,
        bn_running_mean,
        bn_running_var,
        training,
        momentum_val,
        eps_val,
        /*cudnn_enabled=*/true
    );

    auto sizes = y.sizes();
    int N = sizes[0];
    int C = sizes[1];
    int D = sizes[2];
    int H = sizes[3];
    int W = sizes[4];

    TORCH_CHECK(D >= 4 && H >= 4 && W >= 4, "Input dimensions must be at least 4 for fused pooling");

    int pooled_D = D / 4;
    int pooled_H = H / 4;
    int pooled_W = W / 4;

    auto out = at::empty({N, C, pooled_D, pooled_H, pooled_W}, y.options());

    int total_elements = N * C * pooled_D * pooled_H * pooled_W;
    int blockSize = 256;
    int gridSize = (total_elements + blockSize - 1) / blockSize;

    fused_avg_pool3d_warp_kernel<<<gridSize, blockSize, 0, at::cuda::getCurrentCUDAStream()>>>(
        y.data_ptr<float>(),
        out.data_ptr<float>(),
        N, C, D, H, W,
        pooled_D, pooled_H, pooled_W
    );

    return out;
}

PYBIND11_MODULE(TORCH_EXTENSION_NAME, m) {
    m.def(
        "forward", 
        &module_fn_forward, 
        "Fused conv_transpose3d + batch norm + fused avg pooling (CUDA) forward"
    );
}
Performance Metrics
Metric Value Unit Variance Samples
Executed Ipc Active 0.866 inst/cycle 0.000 5
Executed Ipc Elapsed 0.860 inst/cycle 0.000 5
Issue Slots Busy 21.650 % 0.002 5
Issued Ipc Active 0.866 inst/cycle 0.000 5
SM Busy 21.650 % 0.002 5
Memory Throughput 2923572007045.970 byte/second 10545093608061431808.000 5
Mem Busy 57.020 % 0.008 5
Max Bandwidth 87.216 % 0.010 5
L1/TEX Hit Rate 75.480 % 0.000 5
L2 Hit Rate 9.004 % 0.000 5
Mem Pipes Busy 10.556 % 0.000 5
Warp Cycles Per Issued Instruction 67.796 cycle 0.055 5
Warp Cycles Per Executed Instruction 67.800 cycle 0.055 5
Avg. Active Threads Per Warp 32.000 0.000 5
Avg. Not Predicated Off Threads Per Warp 29.580 0.000 5
Max Active Clusters 0.000 cluster 0.000 5
Max Cluster Size 8.000 block 0.000 5
Overall GPU Occupancy 0.000 % 0.000 5
Cluster Occupancy 0.000 % 0.000 5
Block Limit SM 32.000 block 0.000 5
Block Limit Registers 8.000 block 0.000 5
Block Limit Shared Mem 32.000 block 0.000 5
Block Limit Warps 8.000 block 0.000 5
Theoretical Active Warps per SM 64.000 warp 0.000 5
Theoretical Occupancy 100.000 % 0.000 5
Achieved Occupancy 91.832 % 0.009 5
Achieved Active Warps Per SM 58.774 warp 0.004 5
Analysis Rules
Rule Description
WRN HighPipeUtilization All compute pipelines are under-utilized. Either this kernel is very small or it doesn't issue enough warps per scheduler. Check the Launch Statistics and Scheduler Statistics sections for further details.
INF CPIStall Check the Warp Stall Sampling (All Cycles) table for the top stall locations in your source based on sampling data. The Kernel Profiling Guide (https://docs.nvidia.com/nsight-compute/ProfilingGuide/index.html#metrics-reference) provides more details on each stall reason.
INF Occupancy This kernel's theoretical occupancy is not impacted by any block limit.
Operation / Metric Value Unit
aten::to
CPU Time 220679.59 μs
Device Time 5325.78 μs
Self CPU Time 73.30 μs
Self Device Time 0.00 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
aten::_to_copy
CPU Time 220606.29 μs
Device Time 5325.78 μs
Self CPU Time 143.05 μs
Self Device Time 0.00 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
cudaStreamSynchronize
CPU Time 9542266.22 μs
Device Time 0.00 μs
Self CPU Time 9542266.22 μs
Self Device Time 0.00 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
aten::item
CPU Time 9550196.92 μs
Device Time 1581.96 μs
Self CPU Time 1253.68 μs
Self Device Time 0.00 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
aten::_local_scalar_dense
CPU Time 9548943.24 μs
Device Time 1581.96 μs
Self CPU Time 3009.52 μs
Self Device Time 1581.96 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
aten::conv_transpose3d
CPU Time 204439.19 μs
Device Time 3386714.99 μs
Self CPU Time 952.21 μs
Self Device Time 0.00 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
aten::batch_norm
CPU Time 30814.29 μs
Device Time 5975430.54 μs
Self CPU Time 860.65 μs
Self Device Time 0.00 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
aten::_batch_norm_impl_index
CPU Time 29953.64 μs
Device Time 5975430.54 μs
Self CPU Time 939.71 μs
Self Device Time 0.00 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
aten::cudnn_batch_norm
CPU Time 29013.93 μs
Device Time 5975430.54 μs
Self CPU Time 10556.21 μs
Self Device Time 5975430.54 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
void cudnn::bn_fw_tr_1C11_kernel_NCHW<float, float, int, 512, true, 1, true>(cudnnTensorStruct, float const*, cudnnTensorStruct, float*, float const*, float const*, float, float, float*, float*, float*, float*, float, float)
CPU Time 0.00 μs
Device Time 5975430.54 μs
Self CPU Time 0.00 μs
Self Device Time 5975430.54 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
Status: Completed
45312 warnings generated when compiling for host.
Suppressed 45346 warnings (45299 in non-user code, 47 NOLINT).
Use -header-filter=.* to display errors from all non-system headers. Use -system-headers to display errors from system headers as well.
/home/robert_sakana_ai/llm_cuda/experiments/20250208_optimize_b5_s4_e1_sweep/level_2/task_72/b2_s0_warp_primitive_fused_avg_pool/edit_1/edit_1.cu:14:19 bugprone-easily-swappable-parameters
14 | int D, int H, int W,
| ^~~~~~
15 | int pooled_D, int pooled_H, int pooled_W
| ~~~~~~~~~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250208_optimize_b5_s4_e1_sweep/level_2/task_72/b2_s0_warp_primitive_fused_avg_pool/edit_1/edit_1.cu:14:23: note: the first parameter in the range is 'W'
14 | int D, int H, int W,
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250208_optimize_b5_s4_e1_sweep/level_2/task_72/b2_s0_warp_primitive_fused_avg_pool/edit_1/edit_1.cu:15:9: note: the last parameter in the range is 'pooled_D'
15 | int pooled_D, int pooled_H, int pooled_W
| ^~~~~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250208_optimize_b5_s4_e1_sweep/level_2/task_72/b2_s0_warp_primitive_fused_avg_pool/edit_1/edit_1.cu:17:28: warning: narrowing conversion from 'unsigned int' to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
17 | int global_thread_id = blockIdx.x * blockDim.x + threadIdx.x;
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250208_optimize_b5_s4_e1_sweep/level_2/task_72/b2_s0_warp_primitive_fused_avg_pool/edit_1/edit_1.cu:66:60: warning: narrowing conversion from 'int' to 'float' [bugprone-narrowing-conversions]
66 | output[global_thread_id] = valid_count > 0 ? sum / valid_count : 0.0f;
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250208_optimize_b5_s4_e1_sweep/level_2/task_72/b2_s0_warp_primitive_fused_avg_pool/edit_1/edit_1.cu:76:16: warning: the parameter 'x' is copied for each invocation but only used as a const reference; consider making it a const reference [performance-unnecessary-value-param]
76 | at::Tensor x,
| ^
| const &
/home/robert_sakana_ai/llm_cuda/experiments/20250208_optimize_b5_s4_e1_sweep/level_2/task_72/b2_s0_warp_primitive_fused_avg_pool/edit_1/edit_1.cu:77:5: warning: 2 adjacent parameters of 'module_fn_forward' of similar type ('int64_t') are easily swapped by mistake [bugprone-easily-swappable-parameters]
77 | int64_t stride,
| ^~~~~~~~~~~~~~~
78 | int64_t padding,
| ~~~~~~~~~~~~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250208_optimize_b5_s4_e1_sweep/level_2/task_72/b2_s0_warp_primitive_fused_avg_pool/edit_1/edit_1.cu:77:13: note: the first parameter in the range is 'stride'
77 | int64_t stride,
| ^~~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250208_optimize_b5_s4_e1_sweep/level_2/task_72/b2_s0_warp_primitive_fused_avg_pool/edit_1/edit_1.cu:78:13: note: the last parameter in the range is 'padding'
78 | int64_t padding,
| ^~~~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250208_optimize_b5_s4_e1_sweep/level_2/task_72/b2_s0_warp_primitive_fused_avg_pool/edit_1/edit_1.cu:79:16: warning: the parameter 'conv_transpose' is copied for each invocation but only used as a const reference; consider making it a const reference [performance-unnecessary-value-param]
79 | at::Tensor conv_transpose,
| ^
| const &
/home/robert_sakana_ai/llm_cuda/experiments/20250208_optimize_b5_s4_e1_sweep/level_2/task_72/b2_s0_warp_primitive_fused_avg_pool/edit_1/edit_1.cu:85:16: warning: the parameter 'bn_eps' is copied for each invocation but only used as a const reference; consider making it a const reference [performance-unnecessary-value-param]
85 | at::Tensor bn_eps,
| ^
| const &
/home/robert_sakana_ai/llm_cuda/experiments/20250208_optimize_b5_s4_e1_sweep/level_2/task_72/b2_s0_warp_primitive_fused_avg_pool/edit_1/edit_1.cu:86:16: warning: the parameter 'bn_momentum' is copied for each invocation but only used as a const reference; consider making it a const reference [performance-unnecessary-value-param]
86 | at::Tensor bn_momentum
| ^
| const &
/home/robert_sakana_ai/llm_cuda/experiments/20250208_optimize_b5_s4_e1_sweep/level_2/task_72/b2_s0_warp_primitive_fused_avg_pool/edit_1/edit_1.cu:127:13: warning: narrowing conversion from 'long' to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
127 | int N = sizes[0];
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250208_optimize_b5_s4_e1_sweep/level_2/task_72/b2_s0_warp_primitive_fused_avg_pool/edit_1/edit_1.cu:128:13: warning: narrowing conversion from 'long' to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
128 | int C = sizes[1];
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250208_optimize_b5_s4_e1_sweep/level_2/task_72/b2_s0_warp_primitive_fused_avg_pool/edit_1/edit_1.cu:129:13: warning: narrowing conversion from 'long' to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
129 | int D = sizes[2];
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250208_optimize_b5_s4_e1_sweep/level_2/task_72/b2_s0_warp_primitive_fused_avg_pool/edit_1/edit_1.cu:130:13: warning: narrowing conversion from 'long' to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
130 | int H = sizes[3];
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250208_optimize_b5_s4_e1_sweep/level_2/task_72/b2_s0_warp_primitive_fused_avg_pool/edit_1/edit_1.cu:131:13: warning: narrowing conversion from 'long' to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
131 | int W = sizes[4];
| ^