← Back to Leaderboard

The AI CUDA Engineer 👷

72_ConvTranspose3d_BatchNorm_AvgPool_AvgPoolfused_optimized_pool_base

Level 2 • Task 72
import torch
import torch.nn as nn
import torch.nn.functional as F


def module_fn(
    x: torch.Tensor,
    stride: int,
    padding: int,
    conv_transpose: torch.Tensor,
    conv_transpose_bias: torch.Tensor,
    bn_weight: torch.Tensor,
    bn_bias: torch.Tensor,
    bn_running_mean: torch.Tensor,
    bn_running_var: torch.Tensor,
    bn_eps: torch.Tensor,
    bn_momentum: torch.Tensor,
) -> torch.Tensor:
    """
    Applies a 3D transposed convolution, batch normalization and two average pooling layers.

    Args:
        x (torch.Tensor): Input tensor of shape (batch_size, in_channels, depth, height, width)
        stride (int): Stride of the transposed convolution
        padding (int): Padding of the transposed convolution
        conv_transpose (torch.Tensor): Transposed convolution weight tensor
        conv_transpose_bias (torch.Tensor): Bias tensor for transposed convolution
        bn_weight (torch.Tensor): Batch norm weight parameter
        bn_bias (torch.Tensor): Batch norm bias parameter
        bn_running_mean (torch.Tensor): Batch norm running mean
        bn_running_var (torch.Tensor): Batch norm running variance
        bn_eps (torch.Tensor): Small constant for numerical stability
        bn_momentum (torch.Tensor): Momentum for running stats

    Returns:
        torch.Tensor: Output tensor after applying transposed conv, batch norm and avg pooling
    """
    x = F.conv_transpose3d(
        x, conv_transpose, bias=conv_transpose_bias, stride=stride, padding=padding
    )
    x = F.batch_norm(
        x,
        bn_running_mean,
        bn_running_var,
        bn_weight,
        bn_bias,
        training=True,
        momentum=bn_momentum,
        eps=bn_eps,
    )
    x = F.avg_pool3d(x, kernel_size=2)
    x = F.avg_pool3d(x, kernel_size=2)
    return x


class Model(nn.Module):
    """
    A model that performs a 3D transposed convolution, followed by batch normalization,
    two average pooling layers.
    """

    def __init__(
        self, in_channels, out_channels, kernel_size, stride, padding, bias_shape
    ):
        super(Model, self).__init__()
        conv = nn.ConvTranspose3d(in_channels, out_channels, kernel_size)
        bn = nn.BatchNorm3d(out_channels)
        self.conv_transpose_parameter = nn.Parameter(conv.weight)
        self.conv_transpose_bias = nn.Parameter(conv.bias)

        self.bn_weight = nn.Parameter(bn.weight + torch.randn(bn.weight.shape) * 0.02)
        self.bn_bias = nn.Parameter(bn.bias + torch.randn(bn.bias.shape) * 0.02)
        self.register_buffer(
            "bn_running_mean",
            bn.running_mean + torch.randn(bn.running_mean.shape) * 0.02,
        )
        self.register_buffer(
            "bn_running_var",
            bn.running_var + torch.randn(bn.running_var.shape).abs() * 0.02,
        )
        self.register_buffer("bn_eps", torch.tensor(1e-5))
        self.register_buffer("bn_momentum", torch.tensor(0.1))

    def forward(self, x, stride, padding, fn=module_fn):
        return fn(
            x,
            stride,
            padding,
            self.conv_transpose_parameter,
            self.conv_transpose_bias,
            self.bn_weight,
            self.bn_bias,
            self.bn_running_mean,
            self.bn_running_var,
            self.bn_eps,
            self.bn_momentum,
        )


batch_size = 128
in_channels = 3
out_channels = 16
depth, height, width = 32, 32, 32
kernel_size = 3
stride = 2
padding = 1
bias_shape = (out_channels, 1, 1, 1)


def get_inputs():
    return [torch.randn(batch_size, in_channels, depth, height, width), stride, padding]


def get_init_inputs():
    return [in_channels, out_channels, kernel_size, stride, padding, bias_shape]
import torch
import torch.nn as nn

class Model(nn.Module):
    """
    A model that performs a 3D transposed convolution, followed by batch normalization, 
    two average pooling layers.
    """
    def __init__(self, in_channels, out_channels, kernel_size, stride, padding, bias_shape):
        super(Model, self).__init__()
        self.conv_transpose = nn.ConvTranspose3d(in_channels, out_channels, kernel_size, stride=stride, padding=padding)
        self.batch_norm = nn.BatchNorm3d(out_channels)
        # Add noise to batch norm parameters to match functional implementation
        self.batch_norm.weight = nn.Parameter(self.batch_norm.weight + torch.randn(self.batch_norm.weight.shape) * 0.02)
        self.batch_norm.bias = nn.Parameter(self.batch_norm.bias + torch.randn(self.batch_norm.bias.shape) * 0.02)
        self.batch_norm.running_mean = self.batch_norm.running_mean + torch.randn(self.batch_norm.running_mean.shape) * 0.02
        self.batch_norm.running_var = self.batch_norm.running_var + torch.randn(self.batch_norm.running_var.shape).abs() * 0.02
        self.avg_pool1 = nn.AvgPool3d(kernel_size=2)
        self.avg_pool2 = nn.AvgPool3d(kernel_size=2)

    def forward(self, x):
        x = self.conv_transpose(x)
        x = self.batch_norm(x)
        x = self.avg_pool1(x)
        x = self.avg_pool2(x)
        return x


batch_size = 128
in_channels = 3
out_channels = 16
depth, height, width = 32, 32, 32
kernel_size = 3
stride = 2
padding = 1
bias_shape = (out_channels, 1, 1, 1)

def get_inputs():
    return [torch.randn(batch_size, in_channels, depth, height, width)]

def get_init_inputs():
    return [in_channels, out_channels, kernel_size, stride, padding, bias_shape]

Kernel Information

Related Kernels (Level 2, Task 72 • 72_ConvTranspose3d_BatchNorm_AvgPool_AvgPool)

Rank Kernel Name Runtime (ms) Speedup Native Speedup Compile
🥇 warp_uniform_control_flow_edit_1 23.59 1.05 1.06
🥈 strided_fused_avg_pool_base 23.59 1.05 1.06
🥈 fused_convbn_pool_unroll_base 23.59 1.05 1.06
🥈 balanced_avg_pool_edit_1 23.59 1.05 1.06
🥈 warp_divergence_optimisation_base 23.59 1.05 1.06
6 strided_fused_avg_pool_edit_1 23.60 1.05 1.06
7 warp_uniform_control_flow_base 23.61 1.05 1.06
8 warp_primitive_fused_avg_pool_edit_1 23.63 1.05 1.06
9 constant_memory_fused_avg_pool_base 23.64 1.05 1.06
10 fused_optimized_pool_edit_1 23.65 1.04 1.06
11 stride_loops_for_large_workloads_edit_1 23.67 1.04 1.06
11 fused_avgpool_distributed_edit_1 23.67 1.04 1.06
13 manual_unroll_critical_loops_edit_1 23.67 1.04 1.06
14 fused_avgpool_distributed_base 23.68 1.04 1.06
14 fully_unrolled_avgpool_base_base 23.68 1.04 1.06
16 fully_unrolled_avgpool_base_edit_1 23.69 1.04 1.06
17 stride_loops_for_large_workloads_base 23.69 1.04 1.06
18 manual_unroll_critical_loops_base 23.70 1.04 1.06
19 fused_avgpool_blocksize_opt_base 23.71 1.04 1.06
20 fused_optimized_pool_base 23.76 1.04 1.06
#include <torch/extension.h>
#include <ATen/cuda/CUDAContext.h>
#include <cuda.h>
#include <cuda_runtime.h>
#include <vector>

// This kernel fuses conv_transpose3d, batch norm, and a 4x4x4 average pooling operation
// It combines ideas from two kernels: using channel-based parallel work distribution and grid-stride loops
// with manual loop unrolling to maximize instruction-level parallelism and memory coalescing.

__global__ void fused_optimized_pool_kernel(
    const float* __restrict__ input,
    float* __restrict__ output,
    const int N, const int C,
    const int D, const int H, const int W,
    const int pooled_D, const int pooled_H, const int pooled_W
) {
    // Each (n, c) pair is processed in a grid-stride loop over channels
    const int elements_per_channel = pooled_D * pooled_H * pooled_W;
    for (int idx_channel = blockIdx.x; idx_channel < N * C; idx_channel += gridDim.x) {
        const int n = idx_channel / C;
        const int c = idx_channel % C;

        // Compute the base offsets for the input and output for this channel
        const int input_base = ((n * C + c) * D * H * W);
        const int output_base = ((n * C + c) * elements_per_channel);
        const int HW = H * W;

        // Each thread in the block processes multiple output pooling elements
        for (int idx = threadIdx.x; idx < elements_per_channel; idx += blockDim.x) {
            // Map linear index to 3D pooling coordinates
            int tmp = idx;
            const int w_out = tmp % pooled_W;
            tmp /= pooled_W;
            const int h_out = tmp % pooled_H;
            const int d_out = tmp / pooled_H;

            // Compute the starting indices in the input for the 4x4x4 window
            const int d_start = d_out * 4;
            const int h_start = h_out * 4;
            const int w_start = w_out * 4;

            float sum = 0.0f;
            // Unroll the inner loops for better performance
            #pragma unroll
            for (int i = 0; i < 4; i++) {
                const int d_in = d_start + i;
                const int d_offset = d_in * HW;
                #pragma unroll
                for (int j = 0; j < 4; j++) {
                    const int h_in = h_start + j;
                    const int h_offset = h_in * W;
                    #pragma unroll
                    for (int k = 0; k < 4; k++) {
                        const int w_in = w_start + k;
                        int input_idx = input_base + d_offset + h_offset + w_in;
                        sum += input[input_idx];
                    }
                }
            }
            // Write averaged result over 64 elements
            output[output_base + idx] = sum * 0.015625f; // 1/64
        }
    }
}

// Combined module function that performs conv_transpose3d, batch normalization, and the fused pooling
at::Tensor module_fn_forward(
    at::Tensor x,
    int64_t stride,
    int64_t padding,
    at::Tensor conv_transpose,
    at::Tensor conv_transpose_bias,
    at::Tensor bn_weight,
    at::Tensor bn_bias,
    at::Tensor bn_running_mean,
    at::Tensor bn_running_var,
    at::Tensor bn_eps,
    at::Tensor bn_momentum
) {
    // Ensure tensors are CUDA tensors
    TORCH_CHECK(x.is_cuda(), "x must be a CUDA tensor");
    TORCH_CHECK(conv_transpose.is_cuda(), "conv_transpose must be a CUDA tensor");
    TORCH_CHECK(conv_transpose_bias.is_cuda(), "conv_transpose_bias must be a CUDA tensor");
    TORCH_CHECK(bn_weight.is_cuda(), "bn_weight must be a CUDA tensor");
    TORCH_CHECK(bn_bias.is_cuda(), "bn_bias must be a CUDA tensor");
    TORCH_CHECK(bn_running_mean.is_cuda(), "bn_running_mean must be a CUDA tensor");
    TORCH_CHECK(bn_running_var.is_cuda(), "bn_running_var must be a CUDA tensor");
    TORCH_CHECK(bn_eps.is_cuda(), "bn_eps must be a CUDA scalar tensor");
    TORCH_CHECK(bn_momentum.is_cuda(), "bn_momentum must be a CUDA scalar tensor");

    const double eps_val = bn_eps.item<double>();
    const double momentum_val = bn_momentum.item<double>();

    // Prepare 3D stride and padding vectors
    std::vector<int64_t> stride_3d = {stride, stride, stride};
    std::vector<int64_t> pad_3d = {padding, padding, padding};

    // 1) 3D transposed convolution
    auto y = at::conv_transpose3d(x, conv_transpose, conv_transpose_bias, stride_3d, pad_3d);

    // 2) Batch normalization (training mode)
    bool training = true;
    y = at::batch_norm(y, bn_weight, bn_bias, bn_running_mean, bn_running_var, training, momentum_val, eps_val, true);

    // 3) Fused average pooling that simulates two sequential 2x2x2 operations by averaging a 4x4x4 window
    auto sizes = y.sizes();
    const int N = sizes[0];
    const int C = sizes[1];
    const int D = sizes[2];
    const int H = sizes[3];
    const int W = sizes[4];

    TORCH_CHECK(D >= 4 && H >= 4 && W >= 4, "Input dimensions must be at least 4 for fused pooling");

    const int pooled_D = D / 4;
    const int pooled_H = H / 4;
    const int pooled_W = W / 4;
    auto output = at::empty({N, C, pooled_D, pooled_H, pooled_W}, y.options());

    // Setup grid and block dimensions
    const int num_channels = N * C;
    int threads_per_block = 256;
    int gridSize = num_channels < 256 ? num_channels : 256;

    // Launch the fused pooling kernel on the current CUDA stream
    fused_optimized_pool_kernel<<<gridSize, threads_per_block, 0, at::cuda::getCurrentCUDAStream()>>>(
        y.data_ptr<float>(),
        output.data_ptr<float>(),
        N, C,
        D, H, W,
        pooled_D, pooled_H, pooled_W
    );

    return output;
}

PYBIND11_MODULE(TORCH_EXTENSION_NAME, m) {
    m.def("forward", &module_fn_forward, "Fused conv_transpose3d + batch norm + optimized fused avg pooling (CUDA) forward");
}
Performance Metrics
Metric Value Unit Variance Samples
Executed Ipc Active 0.310 inst/cycle 0.000 5
Executed Ipc Elapsed 0.296 inst/cycle 0.000 5
Issue Slots Busy 7.678 % 0.000 5
Issued Ipc Active 0.310 inst/cycle 0.000 5
SM Busy 7.678 % 0.000 5
Memory Throughput 2396661684191.698 byte/second 129276977967719809024.000 5
Mem Busy 43.214 % 0.047 5
Max Bandwidth 71.494 % 0.115 5
L1/TEX Hit Rate 75.500 % 0.000 5
L2 Hit Rate 7.950 % 0.000 5
Mem Pipes Busy 8.322 % 0.002 5
Warp Cycles Per Issued Instruction 48.714 cycle 0.001 5
Warp Cycles Per Executed Instruction 48.720 cycle 0.001 5
Avg. Active Threads Per Warp 31.840 0.000 5
Avg. Not Predicated Off Threads Per Warp 30.610 0.000 5
Max Active Clusters 0.000 cluster 0.000 5
Max Cluster Size 8.000 block 0.000 5
Overall GPU Occupancy 0.000 % 0.000 5
Cluster Occupancy 0.000 % 0.000 5
Block Limit SM 32.000 block 0.000 5
Block Limit Registers 8.000 block 0.000 5
Block Limit Shared Mem 32.000 block 0.000 5
Block Limit Warps 8.000 block 0.000 5
Theoretical Active Warps per SM 64.000 warp 0.000 5
Theoretical Occupancy 100.000 % 0.000 5
Achieved Occupancy 23.356 % 0.000 5
Achieved Active Warps Per SM 14.946 warp 0.000 5
Analysis Rules
Rule Description
WRN HighPipeUtilization All compute pipelines are under-utilized. Either this kernel is very small or it doesn't issue enough warps per scheduler. Check the Launch Statistics and Scheduler Statistics sections for further details.
INF CPIStall Check the Warp Stall Sampling (All Cycles) table for the top stall locations in your source based on sampling data. The Kernel Profiling Guide (https://docs.nvidia.com/nsight-compute/ProfilingGuide/index.html#metrics-reference) provides more details on each stall reason.
WRN Occupancy This kernel's theoretical occupancy is not impacted by any block limit. The difference between calculated theoretical (100.0%) and measured achieved occupancy (23.3%) can be the result of warp scheduling overheads or workload imbalances during the kernel execution. Load imbalances can occur between warps within a block as well as across blocks of the same kernel. See the CUDA Best Practices Guide (https://docs.nvidia.com/cuda/cuda-c-best-practices-guide/index.html#occupancy) for more details on optimizing occupancy.
Operation / Metric Value Unit
aten::to
CPU Time 463106.10 μs
Device Time 5244.19 μs
Self CPU Time 66.84 μs
Self Device Time 0.00 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
aten::_to_copy
CPU Time 463039.26 μs
Device Time 5244.19 μs
Self CPU Time 128.82 μs
Self Device Time 0.00 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
cudaStreamSynchronize
CPU Time 9586196.86 μs
Device Time 0.00 μs
Self CPU Time 9586196.86 μs
Self Device Time 0.00 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
aten::item
CPU Time 9595024.72 μs
Device Time 1623.68 μs
Self CPU Time 1345.49 μs
Self Device Time 0.00 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
aten::_local_scalar_dense
CPU Time 9593679.23 μs
Device Time 1623.68 μs
Self CPU Time 3590.61 μs
Self Device Time 1623.68 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
aten::conv_transpose3d
CPU Time 215771.17 μs
Device Time 3377796.71 μs
Self CPU Time 1010.60 μs
Self Device Time 0.00 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
aten::batch_norm
CPU Time 33133.96 μs
Device Time 5972593.73 μs
Self CPU Time 988.34 μs
Self Device Time 0.00 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
aten::_batch_norm_impl_index
CPU Time 32145.62 μs
Device Time 5972593.73 μs
Self CPU Time 1087.24 μs
Self Device Time 0.00 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
aten::cudnn_batch_norm
CPU Time 31058.38 μs
Device Time 5972593.73 μs
Self CPU Time 12039.19 μs
Self Device Time 5972593.73 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
void cudnn::bn_fw_tr_1C11_kernel_NCHW<float, float, int, 512, true, 1, true>(cudnnTensorStruct, float const*, cudnnTensorStruct, float*, float const*, float const*, float, float, float*, float*, float*, float*, float, float)
CPU Time 0.00 μs
Device Time 5972593.73 μs
Self CPU Time 0.00 μs
Self Device Time 5972593.73 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
Status: Completed
45314 warnings generated when compiling for host.
Suppressed 45346 warnings (45299 in non-user code, 47 NOLINT).
Use -header-filter=.* to display errors from all non-system headers. Use -system-headers to display errors from system headers as well.
/home/robert_sakana_ai/llm_cuda/experiments/20250208_optimize_b5_s4_e1_sweep/level_2/task_72/b4_s3_fused_optimized_pool/base/base.cu:15:31 bugprone-easily-swappable-parameters
15 | const int D, const int H, const int W,
| ^~~~~~~~~~~~
16 | const int pooled_D, const int pooled_H, const int pooled_W
| ~~~~~~~~~~~~~~~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250208_optimize_b5_s4_e1_sweep/level_2/task_72/b4_s3_fused_optimized_pool/base/base.cu:15:41: note: the first parameter in the range is 'W'
15 | const int D, const int H, const int W,
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250208_optimize_b5_s4_e1_sweep/level_2/task_72/b4_s3_fused_optimized_pool/base/base.cu:16:15: note: the last parameter in the range is 'pooled_D'
16 | const int pooled_D, const int pooled_H, const int pooled_W
| ^~~~~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250208_optimize_b5_s4_e1_sweep/level_2/task_72/b4_s3_fused_optimized_pool/base/base.cu:20:28: warning: narrowing conversion from 'unsigned int' to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
20 | for (int idx_channel = blockIdx.x; idx_channel < N * C; idx_channel += gridDim.x) {
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250208_optimize_b5_s4_e1_sweep/level_2/task_72/b4_s3_fused_optimized_pool/base/base.cu:20:76: warning: narrowing conversion from 'unsigned int' to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
20 | for (int idx_channel = blockIdx.x; idx_channel < N * C; idx_channel += gridDim.x) {
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250208_optimize_b5_s4_e1_sweep/level_2/task_72/b4_s3_fused_optimized_pool/base/base.cu:30:24: warning: narrowing conversion from 'unsigned int' to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
30 | for (int idx = threadIdx.x; idx < elements_per_channel; idx += blockDim.x) {
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250208_optimize_b5_s4_e1_sweep/level_2/task_72/b4_s3_fused_optimized_pool/base/base.cu:30:72: warning: narrowing conversion from 'unsigned int' to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
30 | for (int idx = threadIdx.x; idx < elements_per_channel; idx += blockDim.x) {
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250208_optimize_b5_s4_e1_sweep/level_2/task_72/b4_s3_fused_optimized_pool/base/base.cu:69:16: warning: the parameter 'x' is copied for each invocation but only used as a const reference; consider making it a const reference [performance-unnecessary-value-param]
69 | at::Tensor x,
| ^
| const &
/home/robert_sakana_ai/llm_cuda/experiments/20250208_optimize_b5_s4_e1_sweep/level_2/task_72/b4_s3_fused_optimized_pool/base/base.cu:70:5: warning: 2 adjacent parameters of 'module_fn_forward' of similar type ('int64_t') are easily swapped by mistake [bugprone-easily-swappable-parameters]
70 | int64_t stride,
| ^~~~~~~~~~~~~~~
71 | int64_t padding,
| ~~~~~~~~~~~~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250208_optimize_b5_s4_e1_sweep/level_2/task_72/b4_s3_fused_optimized_pool/base/base.cu:70:13: note: the first parameter in the range is 'stride'
70 | int64_t stride,
| ^~~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250208_optimize_b5_s4_e1_sweep/level_2/task_72/b4_s3_fused_optimized_pool/base/base.cu:71:13: note: the last parameter in the range is 'padding'
71 | int64_t padding,
| ^~~~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250208_optimize_b5_s4_e1_sweep/level_2/task_72/b4_s3_fused_optimized_pool/base/base.cu:72:16: warning: the parameter 'conv_transpose' is copied for each invocation but only used as a const reference; consider making it a const reference [performance-unnecessary-value-param]
72 | at::Tensor conv_transpose,
| ^
| const &
/home/robert_sakana_ai/llm_cuda/experiments/20250208_optimize_b5_s4_e1_sweep/level_2/task_72/b4_s3_fused_optimized_pool/base/base.cu:78:16: warning: the parameter 'bn_eps' is copied for each invocation but only used as a const reference; consider making it a const reference [performance-unnecessary-value-param]
78 | at::Tensor bn_eps,
| ^
| const &
/home/robert_sakana_ai/llm_cuda/experiments/20250208_optimize_b5_s4_e1_sweep/level_2/task_72/b4_s3_fused_optimized_pool/base/base.cu:79:16: warning: the parameter 'bn_momentum' is copied for each invocation but only used as a const reference; consider making it a const reference [performance-unnecessary-value-param]
79 | at::Tensor bn_momentum
| ^
| const &
/home/robert_sakana_ai/llm_cuda/experiments/20250208_optimize_b5_s4_e1_sweep/level_2/task_72/b4_s3_fused_optimized_pool/base/base.cu:108:19: warning: narrowing conversion from 'long' to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
108 | const int N = sizes[0];
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250208_optimize_b5_s4_e1_sweep/level_2/task_72/b4_s3_fused_optimized_pool/base/base.cu:109:19: warning: narrowing conversion from 'long' to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
109 | const int C = sizes[1];
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250208_optimize_b5_s4_e1_sweep/level_2/task_72/b4_s3_fused_optimized_pool/base/base.cu:110:19: warning: narrowing conversion from 'long' to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
110 | const int D = sizes[2];
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250208_optimize_b5_s4_e1_sweep/level_2/task_72/b4_s3_fused_optimized_pool/base/base.cu:111:19: warning: narrowing conversion from 'long' to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
111 | const int H = sizes[3];
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250208_optimize_b5_s4_e1_sweep/level_2/task_72/b4_s3_fused_optimized_pool/base/base.cu:112:19: warning: narrowing conversion from 'long' to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
112 | const int W = sizes[4];
| ^