← Back to Leaderboard

The AI CUDA Engineer 👷

72_ConvTranspose3d_BatchNorm_AvgPool_AvgPoolfused_avgpool_distributed_base

Level 2 • Task 72
import torch
import torch.nn as nn
import torch.nn.functional as F


def module_fn(
    x: torch.Tensor,
    stride: int,
    padding: int,
    conv_transpose: torch.Tensor,
    conv_transpose_bias: torch.Tensor,
    bn_weight: torch.Tensor,
    bn_bias: torch.Tensor,
    bn_running_mean: torch.Tensor,
    bn_running_var: torch.Tensor,
    bn_eps: torch.Tensor,
    bn_momentum: torch.Tensor,
) -> torch.Tensor:
    """
    Applies a 3D transposed convolution, batch normalization and two average pooling layers.

    Args:
        x (torch.Tensor): Input tensor of shape (batch_size, in_channels, depth, height, width)
        stride (int): Stride of the transposed convolution
        padding (int): Padding of the transposed convolution
        conv_transpose (torch.Tensor): Transposed convolution weight tensor
        conv_transpose_bias (torch.Tensor): Bias tensor for transposed convolution
        bn_weight (torch.Tensor): Batch norm weight parameter
        bn_bias (torch.Tensor): Batch norm bias parameter
        bn_running_mean (torch.Tensor): Batch norm running mean
        bn_running_var (torch.Tensor): Batch norm running variance
        bn_eps (torch.Tensor): Small constant for numerical stability
        bn_momentum (torch.Tensor): Momentum for running stats

    Returns:
        torch.Tensor: Output tensor after applying transposed conv, batch norm and avg pooling
    """
    x = F.conv_transpose3d(
        x, conv_transpose, bias=conv_transpose_bias, stride=stride, padding=padding
    )
    x = F.batch_norm(
        x,
        bn_running_mean,
        bn_running_var,
        bn_weight,
        bn_bias,
        training=True,
        momentum=bn_momentum,
        eps=bn_eps,
    )
    x = F.avg_pool3d(x, kernel_size=2)
    x = F.avg_pool3d(x, kernel_size=2)
    return x


class Model(nn.Module):
    """
    A model that performs a 3D transposed convolution, followed by batch normalization,
    two average pooling layers.
    """

    def __init__(
        self, in_channels, out_channels, kernel_size, stride, padding, bias_shape
    ):
        super(Model, self).__init__()
        conv = nn.ConvTranspose3d(in_channels, out_channels, kernel_size)
        bn = nn.BatchNorm3d(out_channels)
        self.conv_transpose_parameter = nn.Parameter(conv.weight)
        self.conv_transpose_bias = nn.Parameter(conv.bias)

        self.bn_weight = nn.Parameter(bn.weight + torch.randn(bn.weight.shape) * 0.02)
        self.bn_bias = nn.Parameter(bn.bias + torch.randn(bn.bias.shape) * 0.02)
        self.register_buffer(
            "bn_running_mean",
            bn.running_mean + torch.randn(bn.running_mean.shape) * 0.02,
        )
        self.register_buffer(
            "bn_running_var",
            bn.running_var + torch.randn(bn.running_var.shape).abs() * 0.02,
        )
        self.register_buffer("bn_eps", torch.tensor(1e-5))
        self.register_buffer("bn_momentum", torch.tensor(0.1))

    def forward(self, x, stride, padding, fn=module_fn):
        return fn(
            x,
            stride,
            padding,
            self.conv_transpose_parameter,
            self.conv_transpose_bias,
            self.bn_weight,
            self.bn_bias,
            self.bn_running_mean,
            self.bn_running_var,
            self.bn_eps,
            self.bn_momentum,
        )


batch_size = 128
in_channels = 3
out_channels = 16
depth, height, width = 32, 32, 32
kernel_size = 3
stride = 2
padding = 1
bias_shape = (out_channels, 1, 1, 1)


def get_inputs():
    return [torch.randn(batch_size, in_channels, depth, height, width), stride, padding]


def get_init_inputs():
    return [in_channels, out_channels, kernel_size, stride, padding, bias_shape]
import torch
import torch.nn as nn

class Model(nn.Module):
    """
    A model that performs a 3D transposed convolution, followed by batch normalization, 
    two average pooling layers.
    """
    def __init__(self, in_channels, out_channels, kernel_size, stride, padding, bias_shape):
        super(Model, self).__init__()
        self.conv_transpose = nn.ConvTranspose3d(in_channels, out_channels, kernel_size, stride=stride, padding=padding)
        self.batch_norm = nn.BatchNorm3d(out_channels)
        # Add noise to batch norm parameters to match functional implementation
        self.batch_norm.weight = nn.Parameter(self.batch_norm.weight + torch.randn(self.batch_norm.weight.shape) * 0.02)
        self.batch_norm.bias = nn.Parameter(self.batch_norm.bias + torch.randn(self.batch_norm.bias.shape) * 0.02)
        self.batch_norm.running_mean = self.batch_norm.running_mean + torch.randn(self.batch_norm.running_mean.shape) * 0.02
        self.batch_norm.running_var = self.batch_norm.running_var + torch.randn(self.batch_norm.running_var.shape).abs() * 0.02
        self.avg_pool1 = nn.AvgPool3d(kernel_size=2)
        self.avg_pool2 = nn.AvgPool3d(kernel_size=2)

    def forward(self, x):
        x = self.conv_transpose(x)
        x = self.batch_norm(x)
        x = self.avg_pool1(x)
        x = self.avg_pool2(x)
        return x


batch_size = 128
in_channels = 3
out_channels = 16
depth, height, width = 32, 32, 32
kernel_size = 3
stride = 2
padding = 1
bias_shape = (out_channels, 1, 1, 1)

def get_inputs():
    return [torch.randn(batch_size, in_channels, depth, height, width)]

def get_init_inputs():
    return [in_channels, out_channels, kernel_size, stride, padding, bias_shape]

Kernel Information

Related Kernels (Level 2, Task 72 • 72_ConvTranspose3d_BatchNorm_AvgPool_AvgPool)

Rank Kernel Name Runtime (ms) Speedup Native Speedup Compile
🥇 warp_uniform_control_flow_edit_1 23.59 1.05 1.06
🥈 strided_fused_avg_pool_base 23.59 1.05 1.06
🥈 fused_convbn_pool_unroll_base 23.59 1.05 1.06
🥈 balanced_avg_pool_edit_1 23.59 1.05 1.06
🥈 warp_divergence_optimisation_base 23.59 1.05 1.06
6 strided_fused_avg_pool_edit_1 23.60 1.05 1.06
7 warp_uniform_control_flow_base 23.61 1.05 1.06
8 warp_primitive_fused_avg_pool_edit_1 23.63 1.05 1.06
9 constant_memory_fused_avg_pool_base 23.64 1.05 1.06
10 fused_optimized_pool_edit_1 23.65 1.04 1.06
11 stride_loops_for_large_workloads_edit_1 23.67 1.04 1.06
11 fused_avgpool_distributed_edit_1 23.67 1.04 1.06
13 manual_unroll_critical_loops_edit_1 23.67 1.04 1.06
14 fused_avgpool_distributed_base 23.68 1.04 1.06
14 fully_unrolled_avgpool_base_base 23.68 1.04 1.06
16 fully_unrolled_avgpool_base_edit_1 23.69 1.04 1.06
17 stride_loops_for_large_workloads_base 23.69 1.04 1.06
18 manual_unroll_critical_loops_base 23.70 1.04 1.06
19 fused_avgpool_blocksize_opt_base 23.71 1.04 1.06
20 fused_optimized_pool_base 23.76 1.04 1.06
#include <torch/extension.h>
#include <ATen/cuda/CUDAContext.h>
#include <cuda_runtime.h>
#include <vector>

// Define block size for kernel; adjust as needed
#define BLOCK_SIZE 256

// This kernel fuses two consecutive average pooling operations by performing
// an average over a 4x4x4 block. It uses a grid-stride loop to ensure even workload
// distribution across threads and blocks.

__global__ void fused_avgpool_distributed_kernel(const float* __restrict__ input,
                                                   float* __restrict__ output,
                                                   int N, int C, int D, int H, int W,
                                                   int pooled_D, int pooled_H, int pooled_W) {
    int total = N * C * pooled_D * pooled_H * pooled_W;
    
    // Use grid-stride loop to distribute work evenly
    for (int idx = blockIdx.x * blockDim.x + threadIdx.x;
         idx < total;
         idx += gridDim.x * blockDim.x) {
        
        // Decode flat index into (n, c, d, h, w) for the pooled output
        int w_idx = idx % pooled_W;
        int tmp = idx / pooled_W;
        int h_idx = tmp % pooled_H;
        tmp = tmp / pooled_H;
        int d_idx = tmp % pooled_D;
        tmp = tmp / pooled_D;
        int c_idx = tmp % C;
        int n_idx = tmp / C;

        // Compute the starting indices for the 4x4x4 window in the input tensor
        int d_start = d_idx * 4;
        int h_start = h_idx * 4;
        int w_start = w_idx * 4;

        float sum = 0.0f;
        // Unroll the loops for 4x4x4 average pooling
        #pragma unroll
        for (int dz = 0; dz < 4; dz++) {
            int d_val = d_start + dz;
            #pragma unroll
            for (int dy = 0; dy < 4; dy++) {
                int h_val = h_start + dy;
                #pragma unroll
                for (int dx = 0; dx < 4; dx++) {
                    int w_val = w_start + dx;
                    // Compute input index for NCDHW layout
                    int input_index = (((n_idx * C + c_idx) * D + d_val) * H + h_val) * W + w_val;
                    sum += input[input_index];
                }
            }
        }
        
        // Write the averaged result to the output (64 elements per window)
        output[idx] = sum / 64.0f;
    }
}

at::Tensor module_fn_forward(
    at::Tensor x,
    int64_t stride,
    int64_t padding,
    at::Tensor conv_transpose,
    at::Tensor conv_transpose_bias,
    at::Tensor bn_weight,
    at::Tensor bn_bias,
    at::Tensor bn_running_mean,
    at::Tensor bn_running_var,
    at::Tensor bn_eps,
    at::Tensor bn_momentum
) {
    // Ensure all tensors are CUDA tensors
    TORCH_CHECK(x.is_cuda(), "x must be a CUDA tensor");
    TORCH_CHECK(conv_transpose.is_cuda(), "conv_transpose must be a CUDA tensor");
    TORCH_CHECK(conv_transpose_bias.is_cuda(), "conv_transpose_bias must be a CUDA tensor");
    TORCH_CHECK(bn_weight.is_cuda(), "bn_weight must be a CUDA tensor");
    TORCH_CHECK(bn_bias.is_cuda(), "bn_bias must be a CUDA tensor");
    TORCH_CHECK(bn_running_mean.is_cuda(), "bn_running_mean must be a CUDA tensor");
    TORCH_CHECK(bn_running_var.is_cuda(), "bn_running_var must be a CUDA tensor");
    TORCH_CHECK(bn_eps.is_cuda(), "bn_eps must be a CUDA scalar tensor");
    TORCH_CHECK(bn_momentum.is_cuda(), "bn_momentum must be a CUDA scalar tensor");

    // Extract scalar values
    const double eps_val = bn_eps.item<double>();
    const double momentum_val = bn_momentum.item<double>();

    // 1) 3D Transposed convolution: use provided stride and padding
    std::vector<int64_t> stride_3d = {stride, stride, stride};
    std::vector<int64_t> pad_3d = {padding, padding, padding};
    auto y = at::conv_transpose3d(x, conv_transpose, conv_transpose_bias, stride_3d, pad_3d);

    // 2) Batch Normalization (training mode)
    bool training = true;
    y = at::batch_norm(y, bn_weight, bn_bias, bn_running_mean, bn_running_var, training, momentum_val, eps_val, true);

    // 3) Fused Average Pooling: Replace two consecutive avg_pool3d (kernel_size=2) with a single pooling over a 4x4x4 block
    auto sizes = y.sizes();  // y assumed to be in NCDHW format
    int N_val = sizes[0];
    int C_val = sizes[1];
    int D_val = sizes[2];
    int H_val = sizes[3];
    int W_val = sizes[4];

    // Each avg_pool3d with kernel_size=2 reduces spatial dims by factor 2, so two such ops reduce dims by factor 4
    int pooled_D = D_val / 4;
    int pooled_H = H_val / 4;
    int pooled_W = W_val / 4;

    auto output = at::empty({N_val, C_val, pooled_D, pooled_H, pooled_W}, y.options());

    int total_elements = N_val * C_val * pooled_D * pooled_H * pooled_W;
    int threads = BLOCK_SIZE;
    int blocks = (total_elements + threads - 1) / threads;
    cudaStream_t stream = at::cuda::getCurrentCUDAStream();

    fused_avgpool_distributed_kernel<<<blocks, threads, 0, stream>>>(
        y.data_ptr<float>(),
        output.data_ptr<float>(),
        N_val, C_val, D_val, H_val, W_val,
        pooled_D, pooled_H, pooled_W
    );
    AT_CUDA_CHECK(cudaGetLastError());

    return output;
}

PYBIND11_MODULE(TORCH_EXTENSION_NAME, m) {
    m.def("forward", &module_fn_forward, "Fused Avg Pooling with Even Workload Distribution (CUDA) forward");
}
Performance Metrics
Metric Value Unit Variance Samples
Executed Ipc Active 0.468 inst/cycle 0.000 5
Executed Ipc Elapsed 0.460 inst/cycle 0.000 5
Issue Slots Busy 11.674 % 0.002 5
Issued Ipc Active 0.468 inst/cycle 0.000 5
SM Busy 11.674 % 0.002 5
Memory Throughput 2953854266436.417 byte/second 2123219988754979584.000 5
Mem Busy 55.954 % 0.008 5
Max Bandwidth 88.116 % 0.002 5
L1/TEX Hit Rate 75.120 % 0.000 5
L2 Hit Rate 10.156 % 0.000 5
Mem Pipes Busy 10.646 % 0.000 5
Warp Cycles Per Issued Instruction 125.184 cycle 0.482 5
Warp Cycles Per Executed Instruction 125.228 cycle 0.487 5
Avg. Active Threads Per Warp 32.000 0.000 5
Avg. Not Predicated Off Threads Per Warp 30.250 0.000 5
Max Active Clusters 0.000 cluster 0.000 5
Max Cluster Size 8.000 block 0.000 5
Overall GPU Occupancy 0.000 % 0.000 5
Cluster Occupancy 0.000 % 0.000 5
Block Limit SM 32.000 block 0.000 5
Block Limit Registers 8.000 block 0.000 5
Block Limit Shared Mem 32.000 block 0.000 5
Block Limit Warps 8.000 block 0.000 5
Theoretical Active Warps per SM 64.000 warp 0.000 5
Theoretical Occupancy 100.000 % 0.000 5
Achieved Occupancy 91.302 % 0.002 5
Achieved Active Warps Per SM 58.434 warp 0.001 5
Analysis Rules
Rule Description
WRN HighPipeUtilization All compute pipelines are under-utilized. Either this kernel is very small or it doesn't issue enough warps per scheduler. Check the Launch Statistics and Scheduler Statistics sections for further details.
INF CPIStall Check the Warp Stall Sampling (All Cycles) table for the top stall locations in your source based on sampling data. The Kernel Profiling Guide (https://docs.nvidia.com/nsight-compute/ProfilingGuide/index.html#metrics-reference) provides more details on each stall reason.
INF Occupancy This kernel's theoretical occupancy is not impacted by any block limit.
Operation / Metric Value Unit
aten::to
CPU Time 298161.03 μs
Device Time 5621.83 μs
Self CPU Time 59.08 μs
Self Device Time 0.00 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
aten::_to_copy
CPU Time 298101.95 μs
Device Time 5621.83 μs
Self CPU Time 120.59 μs
Self Device Time 0.00 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
cudaStreamSynchronize
CPU Time 9592898.25 μs
Device Time 0.00 μs
Self CPU Time 9592898.25 μs
Self Device Time 0.00 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
aten::item
CPU Time 9604386.40 μs
Device Time 1630.75 μs
Self CPU Time 1679.66 μs
Self Device Time 0.00 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
aten::_local_scalar_dense
CPU Time 9602706.75 μs
Device Time 1630.75 μs
Self CPU Time 4479.71 μs
Self Device Time 1630.75 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
aten::conv_transpose3d
CPU Time 214422.08 μs
Device Time 3403814.27 μs
Self CPU Time 1271.22 μs
Self Device Time 0.00 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
aten::batch_norm
CPU Time 33585.62 μs
Device Time 6025107.97 μs
Self CPU Time 1128.48 μs
Self Device Time 0.00 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
aten::_batch_norm_impl_index
CPU Time 32457.14 μs
Device Time 6025107.97 μs
Self CPU Time 1228.50 μs
Self Device Time 0.00 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
aten::cudnn_batch_norm
CPU Time 31228.64 μs
Device Time 6025107.97 μs
Self CPU Time 11866.42 μs
Self Device Time 6025107.97 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
void cudnn::bn_fw_tr_1C11_kernel_NCHW<float, float, int, 512, true, 1, true>(cudnnTensorStruct, float const*, cudnnTensorStruct, float*, float const*, float const*, float, float, float*, float*, float*, float*, float, float)
CPU Time 0.00 μs
Device Time 6025107.97 μs
Self CPU Time 0.00 μs
Self Device Time 6025107.97 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
Status: Completed
45312 warnings generated when compiling for host.
Suppressed 45346 warnings (45299 in non-user code, 47 NOLINT).
Use -header-filter=.* to display errors from all non-system headers. Use -system-headers to display errors from system headers as well.
/home/robert_sakana_ai/llm_cuda/experiments/20250212_optimize_b5_s4_e1_v2/level_2/task_72/b3_s1_fused_avgpool_distributed/base/base.cu:15:80 bugprone-easily-swappable-parameters
15 | int N, int C, int D, int H, int W,
| ^~~~~~
16 | int pooled_D, int pooled_H, int pooled_W) {
| ~~~~~~~~~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250212_optimize_b5_s4_e1_v2/level_2/task_72/b3_s1_fused_avgpool_distributed/base/base.cu:15:84: note: the first parameter in the range is 'W'
15 | int N, int C, int D, int H, int W,
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250212_optimize_b5_s4_e1_v2/level_2/task_72/b3_s1_fused_avgpool_distributed/base/base.cu:16:56: note: the last parameter in the range is 'pooled_D'
16 | int pooled_D, int pooled_H, int pooled_W) {
| ^~~~~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250212_optimize_b5_s4_e1_v2/level_2/task_72/b3_s1_fused_avgpool_distributed/base/base.cu:20:20: warning: narrowing conversion from 'unsigned int' to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
20 | for (int idx = blockIdx.x * blockDim.x + threadIdx.x;
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250212_optimize_b5_s4_e1_v2/level_2/task_72/b3_s1_fused_avgpool_distributed/base/base.cu:22:17: warning: narrowing conversion from 'unsigned int' to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
22 | idx += gridDim.x * blockDim.x) {
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250212_optimize_b5_s4_e1_v2/level_2/task_72/b3_s1_fused_avgpool_distributed/base/base.cu:63:16: warning: the parameter 'x' is copied for each invocation but only used as a const reference; consider making it a const reference [performance-unnecessary-value-param]
63 | at::Tensor x,
| ^
| const &
/home/robert_sakana_ai/llm_cuda/experiments/20250212_optimize_b5_s4_e1_v2/level_2/task_72/b3_s1_fused_avgpool_distributed/base/base.cu:64:5: warning: 2 adjacent parameters of 'module_fn_forward' of similar type ('int64_t') are easily swapped by mistake [bugprone-easily-swappable-parameters]
64 | int64_t stride,
| ^~~~~~~~~~~~~~~
65 | int64_t padding,
| ~~~~~~~~~~~~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250212_optimize_b5_s4_e1_v2/level_2/task_72/b3_s1_fused_avgpool_distributed/base/base.cu:64:13: note: the first parameter in the range is 'stride'
64 | int64_t stride,
| ^~~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250212_optimize_b5_s4_e1_v2/level_2/task_72/b3_s1_fused_avgpool_distributed/base/base.cu:65:13: note: the last parameter in the range is 'padding'
65 | int64_t padding,
| ^~~~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250212_optimize_b5_s4_e1_v2/level_2/task_72/b3_s1_fused_avgpool_distributed/base/base.cu:66:16: warning: the parameter 'conv_transpose' is copied for each invocation but only used as a const reference; consider making it a const reference [performance-unnecessary-value-param]
66 | at::Tensor conv_transpose,
| ^
| const &
/home/robert_sakana_ai/llm_cuda/experiments/20250212_optimize_b5_s4_e1_v2/level_2/task_72/b3_s1_fused_avgpool_distributed/base/base.cu:72:16: warning: the parameter 'bn_eps' is copied for each invocation but only used as a const reference; consider making it a const reference [performance-unnecessary-value-param]
72 | at::Tensor bn_eps,
| ^
| const &
/home/robert_sakana_ai/llm_cuda/experiments/20250212_optimize_b5_s4_e1_v2/level_2/task_72/b3_s1_fused_avgpool_distributed/base/base.cu:73:16: warning: the parameter 'bn_momentum' is copied for each invocation but only used as a const reference; consider making it a const reference [performance-unnecessary-value-param]
73 | at::Tensor bn_momentum
| ^
| const &
/home/robert_sakana_ai/llm_cuda/experiments/20250212_optimize_b5_s4_e1_v2/level_2/task_72/b3_s1_fused_avgpool_distributed/base/base.cu:101:17: warning: narrowing conversion from 'long' to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
101 | int N_val = sizes[0];
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250212_optimize_b5_s4_e1_v2/level_2/task_72/b3_s1_fused_avgpool_distributed/base/base.cu:102:17: warning: narrowing conversion from 'long' to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
102 | int C_val = sizes[1];
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250212_optimize_b5_s4_e1_v2/level_2/task_72/b3_s1_fused_avgpool_distributed/base/base.cu:103:17: warning: narrowing conversion from 'long' to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
103 | int D_val = sizes[2];
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250212_optimize_b5_s4_e1_v2/level_2/task_72/b3_s1_fused_avgpool_distributed/base/base.cu:104:17: warning: narrowing conversion from 'long' to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
104 | int H_val = sizes[3];
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250212_optimize_b5_s4_e1_v2/level_2/task_72/b3_s1_fused_avgpool_distributed/base/base.cu:105:17: warning: narrowing conversion from 'long' to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
105 | int W_val = sizes[4];
| ^