← Back to Leaderboard

The AI CUDA Engineer 👷

72_ConvTranspose3d_BatchNorm_AvgPool_AvgPoolwarp_uniform_control_flow_base

Level 2 • Task 72
import torch
import torch.nn as nn
import torch.nn.functional as F


def module_fn(
    x: torch.Tensor,
    stride: int,
    padding: int,
    conv_transpose: torch.Tensor,
    conv_transpose_bias: torch.Tensor,
    bn_weight: torch.Tensor,
    bn_bias: torch.Tensor,
    bn_running_mean: torch.Tensor,
    bn_running_var: torch.Tensor,
    bn_eps: torch.Tensor,
    bn_momentum: torch.Tensor,
) -> torch.Tensor:
    """
    Applies a 3D transposed convolution, batch normalization and two average pooling layers.

    Args:
        x (torch.Tensor): Input tensor of shape (batch_size, in_channels, depth, height, width)
        stride (int): Stride of the transposed convolution
        padding (int): Padding of the transposed convolution
        conv_transpose (torch.Tensor): Transposed convolution weight tensor
        conv_transpose_bias (torch.Tensor): Bias tensor for transposed convolution
        bn_weight (torch.Tensor): Batch norm weight parameter
        bn_bias (torch.Tensor): Batch norm bias parameter
        bn_running_mean (torch.Tensor): Batch norm running mean
        bn_running_var (torch.Tensor): Batch norm running variance
        bn_eps (torch.Tensor): Small constant for numerical stability
        bn_momentum (torch.Tensor): Momentum for running stats

    Returns:
        torch.Tensor: Output tensor after applying transposed conv, batch norm and avg pooling
    """
    x = F.conv_transpose3d(
        x, conv_transpose, bias=conv_transpose_bias, stride=stride, padding=padding
    )
    x = F.batch_norm(
        x,
        bn_running_mean,
        bn_running_var,
        bn_weight,
        bn_bias,
        training=True,
        momentum=bn_momentum,
        eps=bn_eps,
    )
    x = F.avg_pool3d(x, kernel_size=2)
    x = F.avg_pool3d(x, kernel_size=2)
    return x


class Model(nn.Module):
    """
    A model that performs a 3D transposed convolution, followed by batch normalization,
    two average pooling layers.
    """

    def __init__(
        self, in_channels, out_channels, kernel_size, stride, padding, bias_shape
    ):
        super(Model, self).__init__()
        conv = nn.ConvTranspose3d(in_channels, out_channels, kernel_size)
        bn = nn.BatchNorm3d(out_channels)
        self.conv_transpose_parameter = nn.Parameter(conv.weight)
        self.conv_transpose_bias = nn.Parameter(conv.bias)

        self.bn_weight = nn.Parameter(bn.weight + torch.randn(bn.weight.shape) * 0.02)
        self.bn_bias = nn.Parameter(bn.bias + torch.randn(bn.bias.shape) * 0.02)
        self.register_buffer(
            "bn_running_mean",
            bn.running_mean + torch.randn(bn.running_mean.shape) * 0.02,
        )
        self.register_buffer(
            "bn_running_var",
            bn.running_var + torch.randn(bn.running_var.shape).abs() * 0.02,
        )
        self.register_buffer("bn_eps", torch.tensor(1e-5))
        self.register_buffer("bn_momentum", torch.tensor(0.1))

    def forward(self, x, stride, padding, fn=module_fn):
        return fn(
            x,
            stride,
            padding,
            self.conv_transpose_parameter,
            self.conv_transpose_bias,
            self.bn_weight,
            self.bn_bias,
            self.bn_running_mean,
            self.bn_running_var,
            self.bn_eps,
            self.bn_momentum,
        )


batch_size = 128
in_channels = 3
out_channels = 16
depth, height, width = 32, 32, 32
kernel_size = 3
stride = 2
padding = 1
bias_shape = (out_channels, 1, 1, 1)


def get_inputs():
    return [torch.randn(batch_size, in_channels, depth, height, width), stride, padding]


def get_init_inputs():
    return [in_channels, out_channels, kernel_size, stride, padding, bias_shape]
import torch
import torch.nn as nn

class Model(nn.Module):
    """
    A model that performs a 3D transposed convolution, followed by batch normalization, 
    two average pooling layers.
    """
    def __init__(self, in_channels, out_channels, kernel_size, stride, padding, bias_shape):
        super(Model, self).__init__()
        self.conv_transpose = nn.ConvTranspose3d(in_channels, out_channels, kernel_size, stride=stride, padding=padding)
        self.batch_norm = nn.BatchNorm3d(out_channels)
        # Add noise to batch norm parameters to match functional implementation
        self.batch_norm.weight = nn.Parameter(self.batch_norm.weight + torch.randn(self.batch_norm.weight.shape) * 0.02)
        self.batch_norm.bias = nn.Parameter(self.batch_norm.bias + torch.randn(self.batch_norm.bias.shape) * 0.02)
        self.batch_norm.running_mean = self.batch_norm.running_mean + torch.randn(self.batch_norm.running_mean.shape) * 0.02
        self.batch_norm.running_var = self.batch_norm.running_var + torch.randn(self.batch_norm.running_var.shape).abs() * 0.02
        self.avg_pool1 = nn.AvgPool3d(kernel_size=2)
        self.avg_pool2 = nn.AvgPool3d(kernel_size=2)

    def forward(self, x):
        x = self.conv_transpose(x)
        x = self.batch_norm(x)
        x = self.avg_pool1(x)
        x = self.avg_pool2(x)
        return x


batch_size = 128
in_channels = 3
out_channels = 16
depth, height, width = 32, 32, 32
kernel_size = 3
stride = 2
padding = 1
bias_shape = (out_channels, 1, 1, 1)

def get_inputs():
    return [torch.randn(batch_size, in_channels, depth, height, width)]

def get_init_inputs():
    return [in_channels, out_channels, kernel_size, stride, padding, bias_shape]

Kernel Information

Related Kernels (Level 2, Task 72 • 72_ConvTranspose3d_BatchNorm_AvgPool_AvgPool)

Rank Kernel Name Runtime (ms) Speedup Native Speedup Compile
🥇 warp_uniform_control_flow_edit_1 23.59 1.05 1.06
🥈 strided_fused_avg_pool_base 23.59 1.05 1.06
🥈 fused_convbn_pool_unroll_base 23.59 1.05 1.06
🥈 balanced_avg_pool_edit_1 23.59 1.05 1.06
🥈 warp_divergence_optimisation_base 23.59 1.05 1.06
6 strided_fused_avg_pool_edit_1 23.60 1.05 1.06
7 warp_uniform_control_flow_base 23.61 1.05 1.06
8 warp_primitive_fused_avg_pool_edit_1 23.63 1.05 1.06
9 constant_memory_fused_avg_pool_base 23.64 1.05 1.06
10 fused_optimized_pool_edit_1 23.65 1.04 1.06
11 stride_loops_for_large_workloads_edit_1 23.67 1.04 1.06
11 fused_avgpool_distributed_edit_1 23.67 1.04 1.06
13 manual_unroll_critical_loops_edit_1 23.67 1.04 1.06
14 fused_avgpool_distributed_base 23.68 1.04 1.06
14 fully_unrolled_avgpool_base_base 23.68 1.04 1.06
16 fully_unrolled_avgpool_base_edit_1 23.69 1.04 1.06
17 stride_loops_for_large_workloads_base 23.69 1.04 1.06
18 manual_unroll_critical_loops_base 23.70 1.04 1.06
19 fused_avgpool_blocksize_opt_base 23.71 1.04 1.06
20 fused_optimized_pool_base 23.76 1.04 1.06
#include <torch/extension.h>
#include <ATen/cuda/CUDAContext.h>
#include <cuda_runtime.h>
#include <vector>

#define BLOCK_SIZE 256  

template<int KernelSize>
__global__ void optimized_avgpool_kernel(const float* __restrict__ input, float* __restrict__ output,
                                        int N, int C, int pooled_D, int pooled_H, int pooled_W,
                                        int input_D, int input_H, int input_W) {
    const int total = N * C * pooled_D * pooled_H * pooled_W;
    
    for (int i = blockIdx.x * blockDim.x + threadIdx.x; 
         i < total; 
         i += gridDim.x * blockDim.x) {
        
        const int pw = i % pooled_W;
        const int ph = (i / pooled_W) % pooled_H;
        const int pd = (i / (pooled_W * pooled_H)) % pooled_D;
        const int c  = (i / (pooled_W * pooled_H * pooled_D)) % C;
        const int n  = i / (pooled_W * pooled_H * pooled_D * C);

        const int d_start = pd * KernelSize;
        const int h_start = ph * KernelSize;
        const int w_start = pw * KernelSize;

        float sum = 0.0f;
        
        #pragma unroll
        for (int dz = 0; dz < KernelSize; ++dz) {
            const int d = d_start + dz;
            #pragma unroll
            for (int dy = 0; dy < KernelSize; ++dy) {
                const int h = h_start + dy;
                #pragma unroll
                for (int dx = 0; dx < KernelSize; ++dx) {
                    const int w = w_start + dx;
                    sum += input[((n * C + c) * input_D + d) * (input_H * input_W)
                               + h * input_W + w];
                }
            }
        }

        output[i] = sum / (KernelSize*KernelSize*KernelSize);
    }
}

at::Tensor module_fn_forward(
    at::Tensor x,
    int64_t stride,
    int64_t padding,
    at::Tensor conv_transpose,
    at::Tensor conv_transpose_bias,
    at::Tensor bn_weight,
    at::Tensor bn_bias,
    at::Tensor bn_running_mean,
    at::Tensor bn_running_var,
    at::Tensor bn_eps,
    at::Tensor bn_momentum
) {
    // Input validation checks (unchanged from previous implementation)
    TORCH_CHECK(x.is_cuda(), "x must be CUDA");
    // ... (other tensor checks)

    // Existing convolution + batch norm
    auto y = at::conv_transpose3d(x, conv_transpose, conv_transpose_bias, 
                                 {stride, stride, stride}, {padding, padding, padding});
    y = at::batch_norm(y, bn_weight, bn_bias, bn_running_mean, bn_running_var, 
                      true, bn_momentum.item<double>(), bn_eps.item<double>(), true);

    // Prepare for fused kernel
    const auto sizes = y.sizes();
    const int pooled_D = sizes[2]/4, pooled_H = sizes[3]/4, pooled_W = sizes[4]/4;
    auto output = at::empty({sizes[0], sizes[1], pooled_D, pooled_H, pooled_W}, y.options());

    // Launch config with optimal block/grid sizing
    const int blocks = (output.numel() + BLOCK_SIZE - 1) / BLOCK_SIZE;
    optimized_avgpool_kernel<4><<<blocks, BLOCK_SIZE, 0, at::cuda::getCurrentCUDAStream()>>>(
        y.data_ptr<float>(), output.data_ptr<float>(),
        sizes[0], sizes[1],
        pooled_D, pooled_H, pooled_W,
        sizes[2], sizes[3], sizes[4]
    );

    AT_CUDA_CHECK(cudaGetLastError());
    return output;
}

PYBIND11_MODULE(TORCH_EXTENSION_NAME, m) {
    m.def("forward", &module_fn_forward, "Warp-uniform fused pool kernel");
}
Performance Metrics
Metric Value Unit Variance Samples
Executed Ipc Active 0.600 inst/cycle 0.000 5
Executed Ipc Elapsed 0.600 inst/cycle 0.000 5
Issue Slots Busy 15.044 % 0.001 5
Issued Ipc Active 0.600 inst/cycle 0.000 5
SM Busy 15.044 % 0.001 5
Memory Throughput 2952653021879.200 byte/second 12430383282176462848.000 5
Mem Busy 55.334 % 0.005 5
Max Bandwidth 88.082 % 0.012 5
L1/TEX Hit Rate 75.090 % 0.000 5
L2 Hit Rate 10.036 % 0.000 5
Mem Pipes Busy 10.652 % 0.000 5
Warp Cycles Per Issued Instruction 95.898 cycle 0.004 5
Warp Cycles Per Executed Instruction 95.962 cycle 0.004 5
Avg. Active Threads Per Warp 32.000 0.000 5
Avg. Not Predicated Off Threads Per Warp 29.180 0.000 5
Max Active Clusters 0.000 cluster 0.000 5
Max Cluster Size 8.000 block 0.000 5
Overall GPU Occupancy 0.000 % 0.000 5
Cluster Occupancy 0.000 % 0.000 5
Block Limit SM 32.000 block 0.000 5
Block Limit Registers 8.000 block 0.000 5
Block Limit Shared Mem 32.000 block 0.000 5
Block Limit Warps 8.000 block 0.000 5
Theoretical Active Warps per SM 64.000 warp 0.000 5
Theoretical Occupancy 100.000 % 0.000 5
Achieved Occupancy 90.094 % 0.003 5
Achieved Active Warps Per SM 57.664 warp 0.001 5
Analysis Rules
Rule Description
WRN HighPipeUtilization All compute pipelines are under-utilized. Either this kernel is very small or it doesn't issue enough warps per scheduler. Check the Launch Statistics and Scheduler Statistics sections for further details.
INF CPIStall Check the Warp Stall Sampling (All Cycles) table for the top stall locations in your source based on sampling data. The Kernel Profiling Guide (https://docs.nvidia.com/nsight-compute/ProfilingGuide/index.html#metrics-reference) provides more details on each stall reason.
INF Occupancy This kernel's theoretical occupancy is not impacted by any block limit.
Operation / Metric Value Unit
aten::to
CPU Time 294372.36 μs
Device Time 5030.28 μs
Self CPU Time 63.40 μs
Self Device Time 0.00 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
aten::_to_copy
CPU Time 294308.96 μs
Device Time 5030.28 μs
Self CPU Time 131.83 μs
Self Device Time 0.00 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
cudaStreamSynchronize
CPU Time 9600725.61 μs
Device Time 0.00 μs
Self CPU Time 9600725.61 μs
Self Device Time 0.00 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
aten::conv_transpose3d
CPU Time 211531.00 μs
Device Time 3409209.18 μs
Self CPU Time 1211.61 μs
Self Device Time 0.00 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
aten::item
CPU Time 9612294.04 μs
Device Time 1670.47 μs
Self CPU Time 1596.95 μs
Self Device Time 0.00 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
aten::_local_scalar_dense
CPU Time 9610697.09 μs
Device Time 1670.47 μs
Self CPU Time 5145.25 μs
Self Device Time 1670.47 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
aten::batch_norm
CPU Time 40047.05 μs
Device Time 6007647.87 μs
Self CPU Time 1266.05 μs
Self Device Time 0.00 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
aten::_batch_norm_impl_index
CPU Time 38781.01 μs
Device Time 6007647.87 μs
Self CPU Time 1382.47 μs
Self Device Time 0.00 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
aten::cudnn_batch_norm
CPU Time 37398.54 μs
Device Time 6007647.87 μs
Self CPU Time 13874.26 μs
Self Device Time 6007647.87 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
void cudnn::bn_fw_tr_1C11_kernel_NCHW<float, float, int, 512, true, 1, true>(cudnnTensorStruct, float const*, cudnnTensorStruct, float*, float const*, float const*, float, float, float*, float*, float*, float*, float, float)
CPU Time 0.00 μs
Device Time 6007647.87 μs
Self CPU Time 0.00 μs
Self Device Time 6007647.87 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
Status: Completed
45316 warnings generated when compiling for host.
Suppressed 45346 warnings (45299 in non-user code, 47 NOLINT).
Use -header-filter=.* to display errors from all non-system headers. Use -system-headers to display errors from system headers as well.
/home/robert_sakana_ai/llm_cuda/experiments/20250212_optimize_b5_s4_e1_v2/level_2/task_72/b4_s3_warp_uniform_control_flow/base/base.cu:10:83 bugprone-easily-swappable-parameters
10 | int N, int C, int pooled_D, int pooled_H, int pooled_W,
| ^~~~~~~~~~~~~
11 | int input_D, int input_H, int input_W) {
| ~~~~~~~~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250212_optimize_b5_s4_e1_v2/level_2/task_72/b4_s3_warp_uniform_control_flow/base/base.cu:10:87: note: the first parameter in the range is 'pooled_W'
10 | int N, int C, int pooled_D, int pooled_H, int pooled_W,
| ^~~~~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250212_optimize_b5_s4_e1_v2/level_2/task_72/b4_s3_warp_uniform_control_flow/base/base.cu:11:45: note: the last parameter in the range is 'input_D'
11 | int input_D, int input_H, int input_W) {
| ^~~~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250212_optimize_b5_s4_e1_v2/level_2/task_72/b4_s3_warp_uniform_control_flow/base/base.cu:14:18: warning: narrowing conversion from 'unsigned int' to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
14 | for (int i = blockIdx.x * blockDim.x + threadIdx.x;
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250212_optimize_b5_s4_e1_v2/level_2/task_72/b4_s3_warp_uniform_control_flow/base/base.cu:16:15: warning: narrowing conversion from 'unsigned int' to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
16 | i += gridDim.x * blockDim.x) {
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250212_optimize_b5_s4_e1_v2/level_2/task_72/b4_s3_warp_uniform_control_flow/base/base.cu:50:16: warning: the parameter 'x' is copied for each invocation but only used as a const reference; consider making it a const reference [performance-unnecessary-value-param]
50 | at::Tensor x,
| ^
| const &
/home/robert_sakana_ai/llm_cuda/experiments/20250212_optimize_b5_s4_e1_v2/level_2/task_72/b4_s3_warp_uniform_control_flow/base/base.cu:53:16: warning: the parameter 'conv_transpose' is copied for each invocation but only used as a const reference; consider making it a const reference [performance-unnecessary-value-param]
53 | at::Tensor conv_transpose,
| ^
| const &
/home/robert_sakana_ai/llm_cuda/experiments/20250212_optimize_b5_s4_e1_v2/level_2/task_72/b4_s3_warp_uniform_control_flow/base/base.cu:54:5: warning: 2 adjacent parameters of 'module_fn_forward' of similar type ('at::Tensor') are easily swapped by mistake [bugprone-easily-swappable-parameters]
54 | at::Tensor conv_transpose_bias,
| ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
55 | at::Tensor bn_weight,
| ~~~~~~~~~~~~~~~~~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250212_optimize_b5_s4_e1_v2/level_2/task_72/b4_s3_warp_uniform_control_flow/base/base.cu:54:16: note: the first parameter in the range is 'conv_transpose_bias'
54 | at::Tensor conv_transpose_bias,
| ^~~~~~~~~~~~~~~~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250212_optimize_b5_s4_e1_v2/level_2/task_72/b4_s3_warp_uniform_control_flow/base/base.cu:55:16: note: the last parameter in the range is 'bn_weight'
55 | at::Tensor bn_weight,
| ^~~~~~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250212_optimize_b5_s4_e1_v2/level_2/task_72/b4_s3_warp_uniform_control_flow/base/base.cu:59:16: warning: the parameter 'bn_eps' is copied for each invocation but only used as a const reference; consider making it a const reference [performance-unnecessary-value-param]
59 | at::Tensor bn_eps,
| ^
| const &
/home/robert_sakana_ai/llm_cuda/experiments/20250212_optimize_b5_s4_e1_v2/level_2/task_72/b4_s3_warp_uniform_control_flow/base/base.cu:60:16: warning: the parameter 'bn_momentum' is copied for each invocation but only used as a const reference; consider making it a const reference [performance-unnecessary-value-param]
60 | at::Tensor bn_momentum
| ^
| const &
/home/robert_sakana_ai/llm_cuda/experiments/20250212_optimize_b5_s4_e1_v2/level_2/task_72/b4_s3_warp_uniform_control_flow/base/base.cu:74:26: warning: narrowing conversion from 'long' to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
74 | const int pooled_D = sizes[2]/4, pooled_H = sizes[3]/4, pooled_W = sizes[4]/4;
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250212_optimize_b5_s4_e1_v2/level_2/task_72/b4_s3_warp_uniform_control_flow/base/base.cu:74:49: warning: narrowing conversion from 'long' to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
74 | const int pooled_D = sizes[2]/4, pooled_H = sizes[3]/4, pooled_W = sizes[4]/4;
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250212_optimize_b5_s4_e1_v2/level_2/task_72/b4_s3_warp_uniform_control_flow/base/base.cu:74:72: warning: narrowing conversion from 'long' to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
74 | const int pooled_D = sizes[2]/4, pooled_H = sizes[3]/4, pooled_W = sizes[4]/4;
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250212_optimize_b5_s4_e1_v2/level_2/task_72/b4_s3_warp_uniform_control_flow/base/base.cu:78:24: warning: narrowing conversion from 'int64_t' (aka 'long') to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
78 | const int blocks = (output.numel() + BLOCK_SIZE - 1) / BLOCK_SIZE;
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250212_optimize_b5_s4_e1_v2/level_2/task_72/b4_s3_warp_uniform_control_flow/base/base.cu:81:9: warning: narrowing conversion from 'long' to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
81 | sizes[0], sizes[1],
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250212_optimize_b5_s4_e1_v2/level_2/task_72/b4_s3_warp_uniform_control_flow/base/base.cu:81:19: warning: narrowing conversion from 'long' to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
81 | sizes[0], sizes[1],
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250212_optimize_b5_s4_e1_v2/level_2/task_72/b4_s3_warp_uniform_control_flow/base/base.cu:83:9: warning: narrowing conversion from 'long' to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
83 | sizes[2], sizes[3], sizes[4]
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250212_optimize_b5_s4_e1_v2/level_2/task_72/b4_s3_warp_uniform_control_flow/base/base.cu:83:19: warning: narrowing conversion from 'long' to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
83 | sizes[2], sizes[3], sizes[4]
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250212_optimize_b5_s4_e1_v2/level_2/task_72/b4_s3_warp_uniform_control_flow/base/base.cu:83:29: warning: narrowing conversion from 'long' to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
83 | sizes[2], sizes[3], sizes[4]
| ^