← Back to Leaderboard

The AI CUDA Engineer 👷

33_VanillaRNNstride_loops_rnn_base

Level 3 • Task 33
import torch
import torch.nn as nn
import torch.nn.functional as F


def module_fn(
    x: torch.Tensor,
    i2h_weight: torch.Tensor,
    i2h_bias: torch.Tensor,
    h2o_weight: torch.Tensor,
    h2o_bias: torch.Tensor,
    hidden: torch.Tensor,
) -> torch.Tensor:
    """
    Vanilla RNN forward pass

    Args:
        x: Input tensor of shape (batch_size, input_size)
        i2h_weight: Weight tensor for input-to-hidden layer
        i2h_bias: Bias tensor for input-to-hidden layer
        h2o_weight: Weight tensor for hidden-to-output layer
        h2o_bias: Bias tensor for hidden-to-output layer
        hidden: Hidden state tensor

    Returns:
        Output tensor of shape (batch_size, output_size)
    """
    hidden = hidden.to(x.device)
    combined = torch.cat((x, hidden), dim=1)
    hidden = torch.tanh(F.linear(combined, i2h_weight, i2h_bias))
    output = F.linear(hidden, h2o_weight, h2o_bias)
    return output


class Model(nn.Module):
    def __init__(self, input_size: int, hidden_size: int, output_size: int):
        """
        Initialize the Vanilla RNN model.

        :param input_size: The number of input features (int).
        :param hidden_size: The size of the hidden state (int).
        :param output_size: The number of output features (int).
        """
        super(Model, self).__init__()
        self.input_size = input_size
        self.hidden_size = hidden_size
        self.output_size = output_size
        self.hidden = nn.Parameter(torch.randn((batch_size, hidden_size)))

        # Extract parameters from linear layers
        i2h = nn.Linear(input_size + hidden_size, hidden_size)
        self.i2h_weight = nn.Parameter(i2h.weight.data.clone())
        self.i2h_bias = nn.Parameter(i2h.bias.data.clone())

        h2o = nn.Linear(hidden_size, output_size)
        self.h2o_weight = nn.Parameter(h2o.weight.data.clone())
        self.h2o_bias = nn.Parameter(h2o.bias.data.clone())

    def forward(self, x: torch.Tensor, fn=module_fn) -> torch.Tensor:
        return fn(
            x,
            self.i2h_weight,
            self.i2h_bias,
            self.h2o_weight,
            self.h2o_bias,
            self.hidden,
        )


batch_size = 8
input_size = 1024
hidden_size = 256
output_size = 128
sequence_length = 256


def get_inputs():
    return [torch.randn(batch_size, input_size)]


def get_init_inputs():
    return [input_size, hidden_size, output_size]
import torch
import torch.nn as nn

class Model(nn.Module):
    def __init__(self, input_size: int, hidden_size: int, output_size: int):
        """
        Initialize the Vanilla RNN model.
        
        :param input_size: The number of input features (int).
        :param hidden_size: The size of the hidden state (int).
        :param output_size: The number of output features (int).
        """
        super(Model, self).__init__()
        self.input_size = input_size
        self.hidden_size = hidden_size
        self.output_size = output_size
        self.hidden = torch.randn((batch_size, hidden_size))
        
        # Define the RNN cell components (input to hidden, hidden to hidden, and hidden to output)
        self.i2h = nn.Linear(input_size + hidden_size, hidden_size)  # Input to hidden
        self.h2o = nn.Linear(hidden_size, output_size)  # Hidden to output
        self.tanh = nn.Tanh()  # Activation function for hidden state
    
    def forward(self, x: torch.Tensor) -> torch.Tensor:
        """
        Forward pass of the Vanilla RNN.
        
        :param x: Input tensor of shape (batch_size, input_size).
        :param hidden: Hidden state tensor of shape (batch_size, hidden_size).
        :return: Output tensor of shape (batch_size, output_size), and the new hidden state.
        """
        self.hidden = self.hidden.to(x.device)
        combined = torch.cat((x, self.hidden), dim=1)  # Concatenate input and hidden state
        self.hidden = self.tanh(self.i2h(combined))  # Update hidden state
        output = self.h2o(self.hidden)  # Compute output
        return output

batch_size = 8
input_size = 1024
hidden_size = 256
output_size = 128
sequence_length = 256

def get_inputs():
    return [torch.randn(batch_size, input_size)]

def get_init_inputs():
    return [input_size, hidden_size, output_size]

Kernel Information

Related Kernels (Level 3, Task 33 • 33_VanillaRNN)

Rank Kernel Name Runtime (ms) Speedup Native Speedup Compile
🥇 fused_rnn_i2h_warp_base 0.02 1.21 2.67
🥈 warp_optimized_rnn_base 0.02 1.15 2.56
🥈 optimized_rnn_reduction_base 0.02 1.15 2.56
4 atomic_rnn_optimized_edit_1 0.02 1.11 2.45
4 modular_warp_rnn_base 0.02 1.11 2.45
6 balanced_load_rnn_base_base 0.03 0.83 1.84
6 optimized_concat_kernel_base 0.03 0.83 1.84
6 optimized_unroll_concat_base 0.03 0.83 1.84
6 shared_memory_optimized_edit_1 0.03 0.83 1.84
6 stride_loops_rnn_base 0.03 0.83 1.84
6 optimal_blocksize_rnn_edit_1 0.03 0.83 1.84
6 modular_vanillarnn_edit_1 0.03 0.83 1.84
6 unroll_optimized_rnn_base_base 0.03 0.83 1.84
6 optimized_concat_base 0.03 0.83 1.84
15 unrolled_rnn_base_base 0.03 0.80 1.78
15 efficient_concat_base 0.03 0.80 1.78
15 sync_optimized_rnn_base_base 0.03 0.80 1.78
15 atomic_optimized_rnn_base 0.03 0.80 1.78
15 warp_aligned_rnn_base 0.03 0.80 1.78
15 optimized_concat_kernel_edit_1 0.03 0.80 1.78
#include <torch/extension.h>
#include <cuda.h>
#include <cuda_runtime.h>

__global__ void concat_kernel(
    const float* __restrict__ x,
    const float* __restrict__ hidden,
    float* __restrict__ combined,
    int batch_size,
    int x_size,
    int hidden_size,
    int total_elements
) {
    int idx = blockIdx.x * blockDim.x + threadIdx.x;
    int stride = blockDim.x * gridDim.x;
    int combined_dim = x_size + hidden_size;

    while (idx < total_elements) {
        int row = idx / combined_dim;
        int col = idx % combined_dim;

        if (row < batch_size) {
            if (col < x_size) {
                combined[idx] = x[row * x_size + col];
            } else {
                combined[idx] = hidden[row * hidden_size + (col - x_size)];
            }
        }
        idx += stride;
    }
}

torch::Tensor module_fn_cuda(
    torch::Tensor x,
    torch::Tensor i2h_weight,
    torch::Tensor i2h_bias,
    torch::Tensor h2o_weight,
    torch::Tensor h2o_bias,
    torch::Tensor hidden
) {
    x = x.contiguous().cuda();
    i2h_weight = i2h_weight.contiguous().cuda();
    i2h_bias = i2h_bias.contiguous().cuda();
    h2o_weight = h2o_weight.contiguous().cuda();
    h2o_bias = h2o_bias.contiguous().cuda();
    hidden = hidden.contiguous().cuda();

    const int batch_size = x.size(0);
    const int x_size = x.size(1);
    const int hidden_size = hidden.size(1);
    const int total_elements = batch_size * (x_size + hidden_size);

    auto combined = torch::empty({batch_size, x_size + hidden_size}, x.options());

    const int threads = 256;
    const int max_blocks = 65535;
    const int blocks = std::min((total_elements + threads - 1) / threads, max_blocks);

    concat_kernel<<<blocks, threads>>>(x.data_ptr<float>(),
                                      hidden.data_ptr<float>(),
                                      combined.data_ptr<float>(),
                                      batch_size,
                                      x_size,
                                      hidden_size,
                                      total_elements);

    torch::Tensor hidden_new = torch::tanh(torch::addmm(i2h_bias, combined, i2h_weight.t()));
    torch::Tensor output = torch::addmm(h2o_bias, hidden_new, h2o_weight.t());

    return output;
}

PYBIND11_MODULE(TORCH_EXTENSION_NAME, m) {
    m.def("forward", &module_fn_cuda, "Strided RNN forward (CUDA)");
}
Performance Metrics
Metric Value Unit Variance Samples
Executed Ipc Active 0.386 inst/cycle 0.000 5
Executed Ipc Elapsed 0.040 inst/cycle 0.000 5
Issue Slots Busy 10.324 % 0.012 5
Issued Ipc Active 0.414 inst/cycle 0.000 5
SM Busy 10.324 % 0.012 5
Memory Throughput 13299479867.276 byte/second 181681781771271008.000 5
Mem Busy 9.098 % 0.062 5
Max Bandwidth 4.956 % 0.029 5
L1/TEX Hit Rate 0.000 % 0.000 5
L2 Hit Rate 99.002 % 0.557 5
Mem Pipes Busy 0.866 % 0.001 5
Warp Cycles Per Issued Instruction 19.164 cycle 0.025 5
Warp Cycles Per Executed Instruction 20.362 cycle 0.028 5
Avg. Active Threads Per Warp 32.000 0.000 5
Avg. Not Predicated Off Threads Per Warp 25.470 0.000 5
Max Active Clusters 0.000 cluster 0.000 5
Max Cluster Size 8.000 block 0.000 5
Overall GPU Occupancy 0.000 % 0.000 5
Cluster Occupancy 0.000 % 0.000 5
Block Limit SM 32.000 block 0.000 5
Block Limit Registers 8.000 block 0.000 5
Block Limit Shared Mem 32.000 block 0.000 5
Block Limit Warps 8.000 block 0.000 5
Theoretical Active Warps per SM 64.000 warp 0.000 5
Theoretical Occupancy 100.000 % 0.000 5
Achieved Occupancy 12.378 % 0.000 5
Achieved Active Warps Per SM 7.920 warp 0.000 5
Analysis Rules
Rule Description
WRN HighPipeUtilization All compute pipelines are under-utilized. Either this kernel is very small or it doesn't issue enough warps per scheduler. Check the Launch Statistics and Scheduler Statistics sections for further details.
INF CPIStall Check the Warp Stall Sampling (All Cycles) table for the top stall locations in your source based on sampling data. The Kernel Profiling Guide (https://docs.nvidia.com/nsight-compute/ProfilingGuide/index.html#metrics-reference) provides more details on each stall reason.
WRN Occupancy This kernel's theoretical occupancy is not impacted by any block limit. The difference between calculated theoretical (100.0%) and measured achieved occupancy (12.4%) can be the result of warp scheduling overheads or workload imbalances during the kernel execution. Load imbalances can occur between warps within a block as well as across blocks of the same kernel. See the CUDA Best Practices Guide (https://docs.nvidia.com/cuda/cuda-c-best-practices-guide/index.html#occupancy) for more details on optimizing occupancy.
Operation / Metric Value Unit
aten::to
CPU Time 588823.98 μs
Device Time 66.75 μs
Self CPU Time 35951.05 μs
Self Device Time 0.00 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
aten::_to_copy
CPU Time 552872.93 μs
Device Time 66.75 μs
Self CPU Time 150.46 μs
Self Device Time 0.00 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
aten::empty_strided
CPU Time 552208.76 μs
Device Time 0.00 μs
Self CPU Time 188.91 μs
Self Device Time 0.00 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
cudaDeviceGetStreamPriorityRange
CPU Time 545182.90 μs
Device Time 0.00 μs
Self CPU Time 545182.90 μs
Self Device Time 0.00 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
aten::addmm
CPU Time 823690.14 μs
Device Time 338817.09 μs
Self CPU Time 457983.48 μs
Self Device Time 338817.09 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
sm80_xmma_gemm_f32f32_f32f32_f32_tn_n_tilesize32x32x8_stage3_warpsize1x2x1_ffma_aligna4_alignc4_execute_kernel__51_cublas
CPU Time 0.00 μs
Device Time 168549.14 μs
Self CPU Time 0.00 μs
Self Device Time 168549.14 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
aten::zero_
CPU Time 113941.42 μs
Device Time 1117457.83 μs
Self CPU Time 26682.24 μs
Self Device Time 0.00 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
aten::fill_
CPU Time 87260.41 μs
Device Time 1117457.83 μs
Self CPU Time 31296.12 μs
Self Device Time 1117457.83 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
void at::native::vectorized_elementwise_kernel<4, at::native::FillFunctor<int>, at::detail::Array<char*, 1> >(int, at::native::FillFunctor<int>, at::detail::Array<char*, 1>)
CPU Time 0.00 μs
Device Time 1117457.83 μs
Self CPU Time 0.00 μs
Self Device Time 1117457.83 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
Status: Completed
45289 warnings generated when compiling for host.
Suppressed 45328 warnings (45281 in non-user code, 47 NOLINT).
Use -header-filter=.* to display errors from all non-system headers. Use -system-headers to display errors from system headers as well.
/home/robert_sakana_ai/llm_cuda/experiments/20250212_optimize_b5_s4_e1_v2/level_3/task_33/b3_s2_stride_loops_rnn/base/base.cu:6:5 bugprone-easily-swappable-parameters
6 | const float* __restrict__ x,
| ^~~~~~~~~~~~~~~~~~~~~~~~~~~~
7 | const float* __restrict__ hidden,
| ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250212_optimize_b5_s4_e1_v2/level_3/task_33/b3_s2_stride_loops_rnn/base/base.cu:6:31: note: the first parameter in the range is 'x'
6 | const float* __restrict__ x,
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250212_optimize_b5_s4_e1_v2/level_3/task_33/b3_s2_stride_loops_rnn/base/base.cu:7:31: note: the last parameter in the range is 'hidden'
7 | const float* __restrict__ hidden,
| ^~~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250212_optimize_b5_s4_e1_v2/level_3/task_33/b3_s2_stride_loops_rnn/base/base.cu:9:5: warning: 2 adjacent parameters of 'concat_kernel' of similar type ('int') are easily swapped by mistake [bugprone-easily-swappable-parameters]
9 | int batch_size,
| ^~~~~~~~~~~~~~~
10 | int x_size,
| ~~~~~~~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250212_optimize_b5_s4_e1_v2/level_3/task_33/b3_s2_stride_loops_rnn/base/base.cu:9:9: note: the first parameter in the range is 'batch_size'
9 | int batch_size,
| ^~~~~~~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250212_optimize_b5_s4_e1_v2/level_3/task_33/b3_s2_stride_loops_rnn/base/base.cu:10:9: note: the last parameter in the range is 'x_size'
10 | int x_size,
| ^~~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250212_optimize_b5_s4_e1_v2/level_3/task_33/b3_s2_stride_loops_rnn/base/base.cu:11:5: warning: 2 adjacent parameters of 'concat_kernel' of similar type ('int') are easily swapped by mistake [bugprone-easily-swappable-parameters]
11 | int hidden_size,
| ^~~~~~~~~~~~~~~~
12 | int total_elements
| ~~~~~~~~~~~~~~~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250212_optimize_b5_s4_e1_v2/level_3/task_33/b3_s2_stride_loops_rnn/base/base.cu:11:9: note: the first parameter in the range is 'hidden_size'
11 | int hidden_size,
| ^~~~~~~~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250212_optimize_b5_s4_e1_v2/level_3/task_33/b3_s2_stride_loops_rnn/base/base.cu:12:9: note: the last parameter in the range is 'total_elements'
12 | int total_elements
| ^~~~~~~~~~~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250212_optimize_b5_s4_e1_v2/level_3/task_33/b3_s2_stride_loops_rnn/base/base.cu:14:15: warning: narrowing conversion from 'unsigned int' to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
14 | int idx = blockIdx.x * blockDim.x + threadIdx.x;
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250212_optimize_b5_s4_e1_v2/level_3/task_33/b3_s2_stride_loops_rnn/base/base.cu:15:18: warning: narrowing conversion from 'unsigned int' to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
15 | int stride = blockDim.x * gridDim.x;
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250212_optimize_b5_s4_e1_v2/level_3/task_33/b3_s2_stride_loops_rnn/base/base.cu:48:28: warning: narrowing conversion from 'int64_t' (aka 'long') to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
48 | const int batch_size = x.size(0);
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250212_optimize_b5_s4_e1_v2/level_3/task_33/b3_s2_stride_loops_rnn/base/base.cu:49:24: warning: narrowing conversion from 'int64_t' (aka 'long') to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
49 | const int x_size = x.size(1);
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250212_optimize_b5_s4_e1_v2/level_3/task_33/b3_s2_stride_loops_rnn/base/base.cu:50:29: warning: narrowing conversion from 'int64_t' (aka 'long') to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
50 | const int hidden_size = hidden.size(1);
| ^