← Back to Leaderboard

The AI CUDA Engineer 👷

43_Max_Pooling_3Ddivergence_free_maxpool3d_base_base

Level 1 • Task 43
import torch
import torch.nn as nn
import torch.nn.functional as F


def module_fn(
    x: torch.Tensor,
    kernel_size: int,
    stride: int,
    padding: int,
    dilation: int,
    return_indices: bool,
    ceil_mode: bool,
) -> torch.Tensor:
    """
    Functional implementation of Max Pooling 3D.

    Args:
        x (torch.Tensor): Input tensor of shape (batch_size, channels, dim1, dim2, dim3).
        kernel_size (int): Size of the kernel for the max pooling operation.
        stride (int): Stride of the pooling operation.
        padding (int): Padding applied to the input tensor.
        dilation (int): Spacing between kernel elements.
        return_indices (bool): Whether to return indices of the maximum values.
        ceil_mode (bool): When True, the output size is ceil(input_size / stride) instead of floor.

    Returns:
        torch.Tensor: Output tensor with Max Pooling 3D applied.
    """
    return F.max_pool3d(
        x,
        kernel_size=kernel_size,
        stride=stride,
        padding=padding,
        dilation=dilation,
        return_indices=return_indices,
        ceil_mode=ceil_mode,
    )


class Model(nn.Module):
    """
    Simple model that performs Max Pooling 3D.
    """

    def __init__(
        self,
        kernel_size: int,
        stride: int,
        padding: int,
        dilation: int,
        return_indices: bool,
        ceil_mode: bool,
    ):
        """
        Initializes the Max Pooling 3D layer.

        Args:
            kernel_size (int): Size of the kernel for the max pooling operation.
            stride (int): Stride of the pooling operation.
            padding (int): Padding applied to the input tensor.
            dilation (int): Spacing between kernel elements.
            return_indices (bool): Whether to return indices of the maximum values.
            ceil_mode (bool): When True, the output size is ceil(input_size / stride) instead of floor.
        """
        super(Model, self).__init__()
        self.kernel_size = kernel_size
        self.stride = stride
        self.padding = padding
        self.dilation = dilation
        self.return_indices = return_indices
        self.ceil_mode = ceil_mode

    def forward(self, x: torch.Tensor, fn=module_fn) -> torch.Tensor:
        """
        Applies Max Pooling 3D to the input tensor.

        Args:
            x (torch.Tensor): Input tensor of shape (batch_size, channels, dim1, dim2, dim3).

        Returns:
            torch.Tensor: Output tensor with Max Pooling 3D applied.
        """
        return fn(
            x,
            self.kernel_size,
            self.stride,
            self.padding,
            self.dilation,
            self.return_indices,
            self.ceil_mode,
        )


batch_size = 16
channels = 32
dim1 = 64
dim2 = 64
dim3 = 64
kernel_size = 3
stride = 2
padding = 1
dilation = 3
return_indices = False
ceil_mode = False


def get_inputs():
    x = torch.randn(batch_size, channels, dim1, dim2, dim3)
    return [x]


def get_init_inputs():
    return [kernel_size, stride, padding, dilation, return_indices, ceil_mode]
import torch
import torch.nn as nn


class Model(nn.Module):
    """
    Simple model that performs Max Pooling 3D.
    """

    def __init__(
        self,
        kernel_size: int,
        stride: int = None,
        padding: int = 0,
        dilation: int = 1,
        return_indices: bool = False,
        ceil_mode: bool = False,
    ):
        """
        Initializes the Max Pooling 3D layer.

        Args:
            kernel_size (int): Size of the kernel for the max pooling operation.
            stride (int, optional): Stride of the pooling operation. Defaults to None, which means stride is equal to kernel_size.
            padding (int, optional): Padding applied to the input tensor. Defaults to 0.
            dilation (int, optional): Spacing between kernel elements. Defaults to 1.
            return_indices (bool, optional): Whether to return indices of the maximum values. Defaults to False.
            ceil_mode (bool, optional): When True, the output size is ceil(input_size / stride) instead of floor. Defaults to False.
        """
        super(Model, self).__init__()
        self.maxpool = nn.MaxPool3d(
            kernel_size=kernel_size,
            stride=stride,
            padding=padding,
            dilation=dilation,
            return_indices=return_indices,
            ceil_mode=ceil_mode,
        )

    def forward(self, x: torch.Tensor) -> torch.Tensor:
        """
        Applies Max Pooling 3D to the input tensor.

        Args:
            x (torch.Tensor): Input tensor of shape (batch_size, channels, dim1, dim2, dim3).

        Returns:
            torch.Tensor: Output tensor with Max Pooling 3D applied.
        """
        return self.maxpool(x)


batch_size = 16
channels = 32
dim1 = 64
dim2 = 64
dim3 = 64
kernel_size = 3
stride = 2
padding = 1
dilation = 3
return_indices = False
ceil_mode = False


def get_inputs():
    x = torch.randn(batch_size, channels, dim1, dim2, dim3)
    return [x]


def get_init_inputs():
    return [kernel_size, stride, padding, dilation, return_indices, ceil_mode]

Kernel Information

Related Kernels (Level 1, Task 43 • 43_Max_Pooling_3D)

Rank Kernel Name Runtime (ms) Speedup Native Speedup Compile
🥇 maxpool3d_unrolled_base_base 0.25 1.91 3.59
🥈 divergence_free_maxpool3d_base_base 0.30 1.59 2.99
🥉 max_pool3d_manual_unroll_full_unrolling_base 0.31 1.55 2.90
4 max_pool3d_manual_unroll_full_unrolling_edit_1 0.31 1.53 2.87
5 coalesced_maxpool3d_ldg_base 0.37 1.31 2.46
6 streamed_maxpool3d_base_base 0.38 1.25 2.35
6 max_pool3d_combined_base 0.38 1.25 2.35
6 combined_maxpool3d_base 0.38 1.25 2.35
9 max_pool3d_optimized_base 0.39 1.24 2.33
10 optimized_maxpool3d_kernel_base 0.39 1.23 2.32
10 modular_max_pool3d_optimized_base 0.39 1.23 2.32
12 optimized_max_pooling_3d_base 0.39 1.23 2.31
13 aligned_maxpool3d_ldg_base_base 0.39 1.23 2.31
14 block_size_experimentation_base 0.40 1.19 2.24
15 pipelined_max_pooling_3d_base 0.41 1.18 2.22
16 max_pool3d_optimized_sync_base_base 0.43 1.12 2.11
16 max_pool3d_optimized_blocksize_base 0.43 1.12 2.11
16 max_pool3d_unroll_loops_base 0.43 1.12 2.11
19 max_pool3d_optimized_sync_base_edit_1 0.43 1.12 2.11
20 even_workload_maxpool3d_base 0.43 1.11 2.09
#include <torch/extension.h>
#include <cuda.h>
#include <cuda_runtime.h>
#include <vector>
#include <limits>
#include <cmath>

template <typename scalar_t, int KERNEL_SIZE=3>
__global__ void divergence_free_maxpool3d_kernel(
    const scalar_t* __restrict__ input,
    scalar_t* __restrict__ output,
    int64_t* __restrict__ indices,
    const int batch_size,
    const int channels,
    const int input_d, const int input_h, const int input_w,
    const int output_d, const int output_h, const int output_w,
    const int stride,
    const int padding,
    const int dilation) {
    
    // Align work distribution with warp size
    const int tid = blockIdx.x * blockDim.x + threadIdx.x;
    const int lane_id = threadIdx.x & 31;  // Thread position within warp
    const int warp_id = tid >> 5;          // Global warp index
    
    const int total_warps = (batch_size * channels * output_d * output_h * output_w + 31) >> 5;
    if (warp_id >= total_warps) return;

    // Decompose global index while maintaining warp coherency
    const int work_per_warp = output_w * output_h;
    const int warp_work = warp_id * 32 + lane_id;
    
    const int w_out = warp_work % output_w;
    const int h_out = (warp_work / output_w) % output_h;
    const int d_out = (warp_work / work_per_warp) % output_d;
    const int c = (warp_work / (work_per_warp * output_d)) % channels;
    const int b = warp_work / (work_per_warp * output_d * channels);

    if (b >= batch_size) return;

    // Compute input window bounds
    const int d_start = d_out * stride - padding;
    const int h_start = h_out * stride - padding;
    const int w_start = w_out * stride - padding;

    // Pre-compute valid ranges to avoid divergent branches
    const int d_end = d_start + (KERNEL_SIZE - 1) * dilation + 1;
    const int h_end = h_start + (KERNEL_SIZE - 1) * dilation + 1;
    const int w_end = w_start + (KERNEL_SIZE - 1) * dilation + 1;

    scalar_t max_val = -std::numeric_limits<scalar_t>::infinity();
    int max_index = -1;

    // Use predicated execution instead of branching
    #pragma unroll
    for (int kd = 0; kd < KERNEL_SIZE; ++kd) {
        const int d_in = d_start + kd * dilation;
        const bool d_valid = (d_in >= 0 && d_in < input_d);
        
        #pragma unroll
        for (int kh = 0; kh < KERNEL_SIZE; ++kh) {
            const int h_in = h_start + kh * dilation;
            const bool h_valid = d_valid && (h_in >= 0 && h_in < input_h);
            
            #pragma unroll
            for (int kw = 0; kw < KERNEL_SIZE; ++kw) {
                const int w_in = w_start + kw * dilation;
                const bool valid = h_valid && (w_in >= 0 && w_in < input_w);
                
                if (valid) {
                    const int input_idx = (((b * channels + c) * input_d + d_in) * input_h + h_in) * input_w + w_in;
                    const scalar_t val = __ldg(&input[input_idx]);
                    if (val > max_val) {
                        max_val = val;
                        max_index = input_idx;
                    }
                }
            }
        }
    }

    // Compute output index maintaining coalesced access pattern
    const int output_idx = (((b * channels + c) * output_d + d_out) * output_h + h_out) * output_w + w_out;
    if (warp_work < total_warps * 32) {
        output[output_idx] = max_val;
        if (indices != nullptr) {
            indices[output_idx] = max_index;
        }
    }
}

torch::Tensor max_pool3d_cuda_forward(
    torch::Tensor input,
    int kernel_size,
    int stride,
    int padding,
    int dilation,
    bool return_indices,
    bool ceil_mode) {

    auto input_sizes = input.sizes();
    const int batch_size = input_sizes[0];
    const int channels = input_sizes[1];
    const int input_d = input_sizes[2];
    const int input_h = input_sizes[3];
    const int input_w = input_sizes[4];

    const int output_d = ceil_mode ?
        ceil((input_d + 2 * padding - dilation * (kernel_size - 1) - 1) / float(stride) + 1) :
        floor((input_d + 2 * padding - dilation * (kernel_size - 1) - 1) / float(stride) + 1);
    const int output_h = ceil_mode ?
        ceil((input_h + 2 * padding - dilation * (kernel_size - 1) - 1) / float(stride) + 1) :
        floor((input_h + 2 * padding - dilation * (kernel_size - 1) - 1) / float(stride) + 1);
    const int output_w = ceil_mode ?
        ceil((input_w + 2 * padding - dilation * (kernel_size - 1) - 1) / float(stride) + 1) :
        floor((input_w + 2 * padding - dilation * (kernel_size - 1) - 1) / float(stride) + 1);

    auto output = torch::empty({batch_size, channels, output_d, output_h, output_w}, input.options());
    auto indices = return_indices ?
        torch::empty({batch_size, channels, output_d, output_h, output_w}, input.options().dtype(torch::kLong)) :
        torch::Tensor();

    // Configure launch parameters aligned with warp size
    const int threads_per_block = 256;  // Multiple of warp size (32)
    const int total_elements = batch_size * channels * output_d * output_h * output_w;
    const int num_blocks = (total_elements + threads_per_block - 1) / threads_per_block;

    AT_DISPATCH_FLOATING_TYPES(input.scalar_type(), "max_pool3d_forward_cuda", ([&] {
        divergence_free_maxpool3d_kernel<scalar_t><<<num_blocks, threads_per_block>>>(
            input.data_ptr<scalar_t>(),
            output.data_ptr<scalar_t>(),
            return_indices ? indices.data_ptr<int64_t>() : nullptr,
            batch_size, channels,
            input_d, input_h, input_w,
            output_d, output_h, output_w,
            stride, padding, dilation);
    }));

    if (return_indices) {
        return torch::stack({output, indices}, 0);
    }
    return output;
}

PYBIND11_MODULE(TORCH_EXTENSION_NAME, m) {
    m.def("forward", &max_pool3d_cuda_forward, "Divergence-free Max Pool 3D forward (CUDA)");
}
Performance Metrics
Metric Value Unit Variance Samples
Executed Ipc Active 2.936 inst/cycle 0.000 5
Executed Ipc Elapsed 2.906 inst/cycle 0.000 5
Issue Slots Busy 73.374 % 0.000 5
Issued Ipc Active 2.936 inst/cycle 0.000 5
SM Busy 73.374 % 0.000 5
Memory Throughput 1588716265183.104 byte/second 4333659568327771648.000 5
Mem Busy 49.082 % 0.001 5
Max Bandwidth 47.396 % 0.004 5
L1/TEX Hit Rate 73.830 % 0.000 5
L2 Hit Rate 36.652 % 0.001 5
Mem Pipes Busy 41.360 % 0.001 5
Warp Cycles Per Issued Instruction 19.566 cycle 0.000 5
Warp Cycles Per Executed Instruction 19.566 cycle 0.000 5
Avg. Active Threads Per Warp 32.000 0.000 5
Avg. Not Predicated Off Threads Per Warp 29.330 0.000 5
Max Active Clusters 0.000 cluster 0.000 5
Max Cluster Size 8.000 block 0.000 5
Overall GPU Occupancy 0.000 % 0.000 5
Cluster Occupancy 0.000 % 0.000 5
Block Limit SM 32.000 block 0.000 5
Block Limit Registers 8.000 block 0.000 5
Block Limit Shared Mem 32.000 block 0.000 5
Block Limit Warps 8.000 block 0.000 5
Theoretical Active Warps per SM 64.000 warp 0.000 5
Theoretical Occupancy 100.000 % 0.000 5
Achieved Occupancy 89.896 % 0.000 5
Achieved Active Warps Per SM 57.534 warp 0.000 5
Analysis Rules
Rule Description
WRN HighPipeUtilization ALU is the highest-utilized pipeline (67.4%) based on active cycles, taking into account the rates of its different instructions. It executes integer and logic operations. The pipeline is well-utilized, but might become a bottleneck if more work is added. Based on the number of executed instructions, the highest utilized pipeline (67.4%) is ALU. It executes integer and logic operations. Comparing the two, the overall pipeline utilization appears to be caused by frequent, low-latency instructions. See the Kernel Profiling Guide (https://docs.nvidia.com/nsight-compute/ProfilingGuide/index.html#metrics-decoder) or hover over the pipeline name to understand the workloads handled by each pipeline. The Instruction Statistics section shows the mix of executed instructions in this kernel. Check the Warp State Statistics section for which reasons cause warps to stall.
INF CPIStall Check the Warp Stall Sampling (All Cycles) table for the top stall locations in your source based on sampling data. The Kernel Profiling Guide (https://docs.nvidia.com/nsight-compute/ProfilingGuide/index.html#metrics-reference) provides more details on each stall reason.
WRN Occupancy This kernel's theoretical occupancy is not impacted by any block limit. The difference between calculated theoretical (100.0%) and measured achieved occupancy (89.9%) can be the result of warp scheduling overheads or workload imbalances during the kernel execution. Load imbalances can occur between warps within a block as well as across blocks of the same kernel. See the CUDA Best Practices Guide (https://docs.nvidia.com/cuda/cuda-c-best-practices-guide/index.html#occupancy) for more details on optimizing occupancy.
Operation / Metric Value Unit
aten::randn
CPU Time 613362.83 μs
Device Time 0.00 μs
Self CPU Time 98.34 μs
Self Device Time 0.00 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
aten::normal_
CPU Time 613231.74 μs
Device Time 0.00 μs
Self CPU Time 613231.74 μs
Self Device Time 0.00 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
aten::to
CPU Time 481917.31 μs
Device Time 56308.05 μs
Self CPU Time 36.40 μs
Self Device Time 0.00 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
cudaLaunchKernel
CPU Time 2219472.22 μs
Device Time 16837.35 μs
Self CPU Time 2219472.22 μs
Self Device Time 16837.35 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
void divergence_free_maxpool3d_kernel<float, 3>(float const*, float*, long*, int, int, int, int, int, int, int, int, int, int, int)
CPU Time 0.00 μs
Device Time 1963455.48 μs
Self CPU Time 0.00 μs
Self Device Time 1963455.48 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
aten::zero_
CPU Time 1847553.15 μs
Device Time 503857.62 μs
Self CPU Time 12391.47 μs
Self Device Time 0.00 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
aten::fill_
CPU Time 1835163.87 μs
Device Time 503857.62 μs
Self CPU Time 17869.66 μs
Self Device Time 503857.62 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
void at::native::vectorized_elementwise_kernel<4, at::native::FillFunctor<int>, at::detail::Array<char*, 1> >(int, at::native::FillFunctor<int>, at::detail::Array<char*, 1>)
CPU Time 0.00 μs
Device Time 503857.62 μs
Self CPU Time 0.00 μs
Self Device Time 503857.62 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
Status: Completed
45305 warnings generated when compiling for host.
Suppressed 45327 warnings (45280 in non-user code, 47 NOLINT).
Use -header-filter=.* to display errors from all non-system headers. Use -system-headers to display errors from system headers as well.
/home/robert_sakana_ai/llm_cuda/experiments/20250201_optimize_b10_s4_e0_sweep/level_1/task_43/b10_s2_divergence_free_maxpool3d_base/base/base.cu:15:43 bugprone-easily-swappable-parameters
15 | const int input_d, const int input_h, const int input_w,
| ^~~~~~~~~~~~~~~~~~
16 | const int output_d, const int output_h, const int output_w,
| ~~~~~~~~~~~~~~~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250201_optimize_b10_s4_e0_sweep/level_1/task_43/b10_s2_divergence_free_maxpool3d_base/base/base.cu:15:53: note: the first parameter in the range is 'input_w'
15 | const int input_d, const int input_h, const int input_w,
| ^~~~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250201_optimize_b10_s4_e0_sweep/level_1/task_43/b10_s2_divergence_free_maxpool3d_base/base/base.cu:16:15: note: the last parameter in the range is 'output_d'
16 | const int output_d, const int output_h, const int output_w,
| ^~~~~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250201_optimize_b10_s4_e0_sweep/level_1/task_43/b10_s2_divergence_free_maxpool3d_base/base/base.cu:16:45: warning: 2 adjacent parameters of 'divergence_free_maxpool3d_kernel' of similar type ('const int') are easily swapped by mistake [bugprone-easily-swappable-parameters]
16 | const int output_d, const int output_h, const int output_w,
| ^~~~~~~~~~~~~~~~~~~
17 | const int stride,
| ~~~~~~~~~~~~~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250201_optimize_b10_s4_e0_sweep/level_1/task_43/b10_s2_divergence_free_maxpool3d_base/base/base.cu:16:55: note: the first parameter in the range is 'output_w'
16 | const int output_d, const int output_h, const int output_w,
| ^~~~~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250201_optimize_b10_s4_e0_sweep/level_1/task_43/b10_s2_divergence_free_maxpool3d_base/base/base.cu:17:15: note: the last parameter in the range is 'stride'
17 | const int stride,
| ^~~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250201_optimize_b10_s4_e0_sweep/level_1/task_43/b10_s2_divergence_free_maxpool3d_base/base/base.cu:18:5: warning: 2 adjacent parameters of 'divergence_free_maxpool3d_kernel' of similar type ('const int') are easily swapped by mistake [bugprone-easily-swappable-parameters]
18 | const int padding,
| ^~~~~~~~~~~~~~~~~~
19 | const int dilation) {
| ~~~~~~~~~~~~~~~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250201_optimize_b10_s4_e0_sweep/level_1/task_43/b10_s2_divergence_free_maxpool3d_base/base/base.cu:18:15: note: the first parameter in the range is 'padding'
18 | const int padding,
| ^~~~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250201_optimize_b10_s4_e0_sweep/level_1/task_43/b10_s2_divergence_free_maxpool3d_base/base/base.cu:19:15: note: the last parameter in the range is 'dilation'
19 | const int dilation) {
| ^~~~~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250201_optimize_b10_s4_e0_sweep/level_1/task_43/b10_s2_divergence_free_maxpool3d_base/base/base.cu:22:21: warning: narrowing conversion from 'unsigned int' to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
22 | const int tid = blockIdx.x * blockDim.x + threadIdx.x;
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250201_optimize_b10_s4_e0_sweep/level_1/task_43/b10_s2_divergence_free_maxpool3d_base/base/base.cu:23:25: warning: narrowing conversion from 'unsigned int' to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
23 | const int lane_id = threadIdx.x & 31; // Thread position within warp
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250201_optimize_b10_s4_e0_sweep/level_1/task_43/b10_s2_divergence_free_maxpool3d_base/base/base.cu:102:28: warning: narrowing conversion from 'long' to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
102 | const int batch_size = input_sizes[0];
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250201_optimize_b10_s4_e0_sweep/level_1/task_43/b10_s2_divergence_free_maxpool3d_base/base/base.cu:103:26: warning: narrowing conversion from 'long' to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
103 | const int channels = input_sizes[1];
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250201_optimize_b10_s4_e0_sweep/level_1/task_43/b10_s2_divergence_free_maxpool3d_base/base/base.cu:104:25: warning: narrowing conversion from 'long' to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
104 | const int input_d = input_sizes[2];
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250201_optimize_b10_s4_e0_sweep/level_1/task_43/b10_s2_divergence_free_maxpool3d_base/base/base.cu:105:25: warning: narrowing conversion from 'long' to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
105 | const int input_h = input_sizes[3];
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250201_optimize_b10_s4_e0_sweep/level_1/task_43/b10_s2_divergence_free_maxpool3d_base/base/base.cu:106:25: warning: narrowing conversion from 'long' to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
106 | const int input_w = input_sizes[4];
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250201_optimize_b10_s4_e0_sweep/level_1/task_43/b10_s2_divergence_free_maxpool3d_base/base/base.cu:109:9: warning: narrowing conversion from 'float' to 'int' [bugprone-narrowing-conversions]
109 | ceil((input_d + 2 * padding - dilation * (kernel_size - 1) - 1) / float(stride) + 1) :
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250201_optimize_b10_s4_e0_sweep/level_1/task_43/b10_s2_divergence_free_maxpool3d_base/base/base.cu:109:14: warning: narrowing conversion from 'int' to 'float' [bugprone-narrowing-conversions]
109 | ceil((input_d + 2 * padding - dilation * (kernel_size - 1) - 1) / float(stride) + 1) :
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250201_optimize_b10_s4_e0_sweep/level_1/task_43/b10_s2_divergence_free_maxpool3d_base/base/base.cu:110:9: warning: narrowing conversion from 'float' to 'int' [bugprone-narrowing-conversions]
110 | floor((input_d + 2 * padding - dilation * (kernel_size - 1) - 1) / float(stride) + 1);
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250201_optimize_b10_s4_e0_sweep/level_1/task_43/b10_s2_divergence_free_maxpool3d_base/base/base.cu:110:15: warning: narrowing conversion from 'int' to 'float' [bugprone-narrowing-conversions]
110 | floor((input_d + 2 * padding - dilation * (kernel_size - 1) - 1) / float(stride) + 1);
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250201_optimize_b10_s4_e0_sweep/level_1/task_43/b10_s2_divergence_free_maxpool3d_base/base/base.cu:112:9: warning: narrowing conversion from 'float' to 'int' [bugprone-narrowing-conversions]
112 | ceil((input_h + 2 * padding - dilation * (kernel_size - 1) - 1) / float(stride) + 1) :
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250201_optimize_b10_s4_e0_sweep/level_1/task_43/b10_s2_divergence_free_maxpool3d_base/base/base.cu:112:14: warning: narrowing conversion from 'int' to 'float' [bugprone-narrowing-conversions]
112 | ceil((input_h + 2 * padding - dilation * (kernel_size - 1) - 1) / float(stride) + 1) :
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250201_optimize_b10_s4_e0_sweep/level_1/task_43/b10_s2_divergence_free_maxpool3d_base/base/base.cu:113:9: warning: narrowing conversion from 'float' to 'int' [bugprone-narrowing-conversions]
113 | floor((input_h + 2 * padding - dilation * (kernel_size - 1) - 1) / float(stride) + 1);
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250201_optimize_b10_s4_e0_sweep/level_1/task_43/b10_s2_divergence_free_maxpool3d_base/base/base.cu:113:15: warning: narrowing conversion from 'int' to 'float' [bugprone-narrowing-conversions]
113 | floor((input_h + 2 * padding - dilation * (kernel_size - 1) - 1) / float(stride) + 1);
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250201_optimize_b10_s4_e0_sweep/level_1/task_43/b10_s2_divergence_free_maxpool3d_base/base/base.cu:115:9: warning: narrowing conversion from 'float' to 'int' [bugprone-narrowing-conversions]
115 | ceil((input_w + 2 * padding - dilation * (kernel_size - 1) - 1) / float(stride) + 1) :
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250201_optimize_b10_s4_e0_sweep/level_1/task_43/b10_s2_divergence_free_maxpool3d_base/base/base.cu:115:14: warning: narrowing conversion from 'int' to 'float' [bugprone-narrowing-conversions]
115 | ceil((input_w + 2 * padding - dilation * (kernel_size - 1) - 1) / float(stride) + 1) :
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250201_optimize_b10_s4_e0_sweep/level_1/task_43/b10_s2_divergence_free_maxpool3d_base/base/base.cu:116:9: warning: narrowing conversion from 'float' to 'int' [bugprone-narrowing-conversions]
116 | floor((input_w + 2 * padding - dilation * (kernel_size - 1) - 1) / float(stride) + 1);
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250201_optimize_b10_s4_e0_sweep/level_1/task_43/b10_s2_divergence_free_maxpool3d_base/base/base.cu:116:15: warning: narrowing conversion from 'int' to 'float' [bugprone-narrowing-conversions]
116 | floor((input_w + 2 * padding - dilation * (kernel_size - 1) - 1) / float(stride) + 1);
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250201_optimize_b10_s4_e0_sweep/level_1/task_43/b10_s2_divergence_free_maxpool3d_base/base/base.cu:128:5: warning: inside a lambda, '__func__' expands to the name of the function call operator; consider capturing the name of the enclosing function explicitly [bugprone-lambda-function-name]
128 | AT_DISPATCH_FLOATING_TYPES(input.scalar_type(), "max_pool3d_forward_cuda", ([&] {
| ^
/home/robert_sakana_ai/miniconda3/envs/llm2cuda/lib/python3.11/site-packages/torch/include/ATen/Dispatch.h:237:34: note: expanded from macro 'AT_DISPATCH_FLOATING_TYPES'
237 | AT_DISPATCH_SWITCH(TYPE, NAME, AT_DISPATCH_CASE_FLOATING_TYPES(__VA_ARGS__))
| ^
/home/robert_sakana_ai/miniconda3/envs/llm2cuda/lib/python3.11/site-packages/torch/include/ATen/Dispatch.h:233:3: note: expanded from macro 'AT_DISPATCH_CASE_FLOATING_TYPES'
233 | AT_DISPATCH_CASE(at::ScalarType::Double, __VA_ARGS__) \
| ^
/home/robert_sakana_ai/miniconda3/envs/llm2cuda/lib/python3.11/site-packages/torch/include/ATen/Dispatch.h:74:3: note: expanded from macro 'AT_DISPATCH_CASE'
74 | AT_PRIVATE_CASE_TYPE_USING_HINT(enum_type, scalar_t, __VA_ARGS__)
| ^
note: (skipping 1 expansions in backtrace; use -fmacro-backtrace-limit=0 to see all)
/home/robert_sakana_ai/miniconda3/envs/llm2cuda/lib/python3.11/site-packages/torch/include/ATen/Dispatch.h:58:7: note: expanded from macro 'AT_PRIVATE_CHECK_SELECTIVE_BUILD'
58 | AT_ERROR( \
| ^
/home/robert_sakana_ai/miniconda3/envs/llm2cuda/lib/python3.11/site-packages/torch/include/c10/util/Exception.h:711:32: note: expanded from macro 'AT_ERROR'
711 | C10_EXPAND_MSVC_WORKAROUND(TORCH_CHECK(false, ::c10::str(__VA_ARGS__))); \
| ^
/home/robert_sakana_ai/miniconda3/envs/llm2cuda/lib/python3.11/site-packages/torch/include/c10/util/Exception.h:536:9: note: expanded from macro 'TORCH_CHECK'
536 | __func__, \
| ^