← Back to Leaderboard

The AI CUDA Engineer 👷

43_Max_Pooling_3Dblock_size_experimentation_base

Level 1 • Task 43
import torch
import torch.nn as nn
import torch.nn.functional as F


def module_fn(
    x: torch.Tensor,
    kernel_size: int,
    stride: int,
    padding: int,
    dilation: int,
    return_indices: bool,
    ceil_mode: bool,
) -> torch.Tensor:
    """
    Functional implementation of Max Pooling 3D.

    Args:
        x (torch.Tensor): Input tensor of shape (batch_size, channels, dim1, dim2, dim3).
        kernel_size (int): Size of the kernel for the max pooling operation.
        stride (int): Stride of the pooling operation.
        padding (int): Padding applied to the input tensor.
        dilation (int): Spacing between kernel elements.
        return_indices (bool): Whether to return indices of the maximum values.
        ceil_mode (bool): When True, the output size is ceil(input_size / stride) instead of floor.

    Returns:
        torch.Tensor: Output tensor with Max Pooling 3D applied.
    """
    return F.max_pool3d(
        x,
        kernel_size=kernel_size,
        stride=stride,
        padding=padding,
        dilation=dilation,
        return_indices=return_indices,
        ceil_mode=ceil_mode,
    )


class Model(nn.Module):
    """
    Simple model that performs Max Pooling 3D.
    """

    def __init__(
        self,
        kernel_size: int,
        stride: int,
        padding: int,
        dilation: int,
        return_indices: bool,
        ceil_mode: bool,
    ):
        """
        Initializes the Max Pooling 3D layer.

        Args:
            kernel_size (int): Size of the kernel for the max pooling operation.
            stride (int): Stride of the pooling operation.
            padding (int): Padding applied to the input tensor.
            dilation (int): Spacing between kernel elements.
            return_indices (bool): Whether to return indices of the maximum values.
            ceil_mode (bool): When True, the output size is ceil(input_size / stride) instead of floor.
        """
        super(Model, self).__init__()
        self.kernel_size = kernel_size
        self.stride = stride
        self.padding = padding
        self.dilation = dilation
        self.return_indices = return_indices
        self.ceil_mode = ceil_mode

    def forward(self, x: torch.Tensor, fn=module_fn) -> torch.Tensor:
        """
        Applies Max Pooling 3D to the input tensor.

        Args:
            x (torch.Tensor): Input tensor of shape (batch_size, channels, dim1, dim2, dim3).

        Returns:
            torch.Tensor: Output tensor with Max Pooling 3D applied.
        """
        return fn(
            x,
            self.kernel_size,
            self.stride,
            self.padding,
            self.dilation,
            self.return_indices,
            self.ceil_mode,
        )


batch_size = 16
channels = 32
dim1 = 64
dim2 = 64
dim3 = 64
kernel_size = 3
stride = 2
padding = 1
dilation = 3
return_indices = False
ceil_mode = False


def get_inputs():
    x = torch.randn(batch_size, channels, dim1, dim2, dim3)
    return [x]


def get_init_inputs():
    return [kernel_size, stride, padding, dilation, return_indices, ceil_mode]
import torch
import torch.nn as nn


class Model(nn.Module):
    """
    Simple model that performs Max Pooling 3D.
    """

    def __init__(
        self,
        kernel_size: int,
        stride: int = None,
        padding: int = 0,
        dilation: int = 1,
        return_indices: bool = False,
        ceil_mode: bool = False,
    ):
        """
        Initializes the Max Pooling 3D layer.

        Args:
            kernel_size (int): Size of the kernel for the max pooling operation.
            stride (int, optional): Stride of the pooling operation. Defaults to None, which means stride is equal to kernel_size.
            padding (int, optional): Padding applied to the input tensor. Defaults to 0.
            dilation (int, optional): Spacing between kernel elements. Defaults to 1.
            return_indices (bool, optional): Whether to return indices of the maximum values. Defaults to False.
            ceil_mode (bool, optional): When True, the output size is ceil(input_size / stride) instead of floor. Defaults to False.
        """
        super(Model, self).__init__()
        self.maxpool = nn.MaxPool3d(
            kernel_size=kernel_size,
            stride=stride,
            padding=padding,
            dilation=dilation,
            return_indices=return_indices,
            ceil_mode=ceil_mode,
        )

    def forward(self, x: torch.Tensor) -> torch.Tensor:
        """
        Applies Max Pooling 3D to the input tensor.

        Args:
            x (torch.Tensor): Input tensor of shape (batch_size, channels, dim1, dim2, dim3).

        Returns:
            torch.Tensor: Output tensor with Max Pooling 3D applied.
        """
        return self.maxpool(x)


batch_size = 16
channels = 32
dim1 = 64
dim2 = 64
dim3 = 64
kernel_size = 3
stride = 2
padding = 1
dilation = 3
return_indices = False
ceil_mode = False


def get_inputs():
    x = torch.randn(batch_size, channels, dim1, dim2, dim3)
    return [x]


def get_init_inputs():
    return [kernel_size, stride, padding, dilation, return_indices, ceil_mode]

Kernel Information

Related Kernels (Level 1, Task 43 • 43_Max_Pooling_3D)

Rank Kernel Name Runtime (ms) Speedup Native Speedup Compile
🥇 maxpool3d_unrolled_base_base 0.25 1.91 3.59
🥈 divergence_free_maxpool3d_base_base 0.30 1.59 2.99
🥉 max_pool3d_manual_unroll_full_unrolling_base 0.31 1.55 2.90
4 max_pool3d_manual_unroll_full_unrolling_edit_1 0.31 1.53 2.87
5 coalesced_maxpool3d_ldg_base 0.37 1.31 2.46
6 streamed_maxpool3d_base_base 0.38 1.25 2.35
6 max_pool3d_combined_base 0.38 1.25 2.35
6 combined_maxpool3d_base 0.38 1.25 2.35
9 max_pool3d_optimized_base 0.39 1.24 2.33
10 optimized_maxpool3d_kernel_base 0.39 1.23 2.32
10 modular_max_pool3d_optimized_base 0.39 1.23 2.32
12 optimized_max_pooling_3d_base 0.39 1.23 2.31
13 aligned_maxpool3d_ldg_base_base 0.39 1.23 2.31
14 block_size_experimentation_base 0.40 1.19 2.24
15 pipelined_max_pooling_3d_base 0.41 1.18 2.22
16 max_pool3d_optimized_sync_base_base 0.43 1.12 2.11
16 max_pool3d_optimized_blocksize_base 0.43 1.12 2.11
16 max_pool3d_unroll_loops_base 0.43 1.12 2.11
19 max_pool3d_optimized_sync_base_edit_1 0.43 1.12 2.11
20 even_workload_maxpool3d_base 0.43 1.11 2.09
#include <torch/extension.h>
#include <cuda.h>
#include <cuda_runtime.h>
#include <vector>
#include <limits>

// Define an inline device function for minimum of two ints
__device__ inline int dmin(int a, int b) { return a < b ? a : b; }

// Optimized CUDA kernel for 3D max pooling with block size experimentation
template <typename scalar_t>
__global__ void max_pool3d_forward_kernel_opt_block(
    const scalar_t* __restrict__ input,
    scalar_t* __restrict__ output,
    int64_t* __restrict__ indices,
    const int batch_size,
    const int channels,
    const int input_d, const int input_h, const int input_w,
    const int output_d, const int output_h, const int output_w,
    const int kernel_size,
    const int stride,
    const int padding,
    const int dilation) {

    const int idx = blockIdx.x * blockDim.x + threadIdx.x;
    const int total = batch_size * channels * output_d * output_h * output_w;
    if (idx >= total) return;

    // Compute output indices
    const int w_out = idx % output_w;
    const int h_out = (idx / output_w) % output_h;
    const int d_out = (idx / (output_w * output_h)) % output_d;
    const int c = (idx / (output_w * output_h * output_d)) % channels;
    const int b = idx / (output_w * output_h * output_d * channels);

    // Compute start positions in the input
    const int d_start = d_out * stride - padding;
    const int h_start = h_out * stride - padding;
    const int w_start = w_out * stride - padding;
    
    scalar_t max_val = -std::numeric_limits<scalar_t>::infinity();
    int max_index = -1;

    // Precompute valid loop bounds for each dimension
    int k_d_min = (d_start < 0) ? ((-d_start + dilation - 1) / dilation) : 0;
    int valid_d_max = (input_d - d_start + dilation - 1) / dilation;
    int k_d_max = dmin(kernel_size, valid_d_max);

    int k_h_min = (h_start < 0) ? ((-h_start + dilation - 1) / dilation) : 0;
    int valid_h_max = (input_h - h_start + dilation - 1) / dilation;
    int k_h_max = dmin(kernel_size, valid_h_max);

    int k_w_min = (w_start < 0) ? ((-w_start + dilation - 1) / dilation) : 0;
    int valid_w_max = (input_w - w_start + dilation - 1) / dilation;
    int k_w_max = dmin(kernel_size, valid_w_max);

    for (int k_d = k_d_min; k_d < k_d_max; k_d++) {
        const int d_in = d_start + k_d * dilation;
        for (int k_h = k_h_min; k_h < k_h_max; k_h++) {
            const int h_in = h_start + k_h * dilation;
            for (int k_w = k_w_min; k_w < k_w_max; k_w++) {
                const int w_in = w_start + k_w * dilation;
                const int input_idx = (((b * channels + c) * input_d + d_in) * input_h + h_in) * input_w + w_in;
                const scalar_t val = input[input_idx];
                if (val > max_val) {
                    max_val = val;
                    max_index = input_idx;
                }
            }
        }
    }

    output[idx] = max_val;
    if (indices != nullptr) {
        indices[idx] = max_index;
    }
}

// Host function that sets up the CUDA kernel launch
torch::Tensor max_pool3d_cuda_forward_opt_block(
    torch::Tensor input,
    int kernel_size,
    int stride,
    int padding,
    int dilation,
    bool return_indices,
    bool ceil_mode) {

    auto input_sizes = input.sizes();
    const int batch_size = input_sizes[0];
    const int channels = input_sizes[1];
    const int input_d = input_sizes[2];
    const int input_h = input_sizes[3];
    const int input_w = input_sizes[4];

    // Calculate output dimensions
    const int output_d = ceil_mode ?
        ceil((input_d + 2 * padding - dilation * (kernel_size - 1) - 1) / float(stride) + 1) :
        floor((input_d + 2 * padding - dilation * (kernel_size - 1) - 1) / float(stride) + 1);
    const int output_h = ceil_mode ?
        ceil((input_h + 2 * padding - dilation * (kernel_size - 1) - 1) / float(stride) + 1) :
        floor((input_h + 2 * padding - dilation * (kernel_size - 1) - 1) / float(stride) + 1);
    const int output_w = ceil_mode ?
        ceil((input_w + 2 * padding - dilation * (kernel_size - 1) - 1) / float(stride) + 1) :
        floor((input_w + 2 * padding - dilation * (kernel_size - 1) - 1) / float(stride) + 1);

    auto output = torch::empty({batch_size, channels, output_d, output_h, output_w}, input.options());
    auto indices = return_indices ?
        torch::empty({batch_size, channels, output_d, output_h, output_w}, input.options().dtype(torch::kLong)) :
        torch::Tensor();

    // Experiment with different block sizes
    const int threads = 512;  // Example block size. This could be adjusted to test performance.
    const int total = batch_size * channels * output_d * output_h * output_w;
    const int blocks = (total + threads - 1) / threads;

    AT_DISPATCH_FLOATING_TYPES(input.scalar_type(), "max_pool3d_forward_cuda_opt_block", ([&] {
        max_pool3d_forward_kernel_opt_block<scalar_t><<<blocks, threads>>>(
            input.data_ptr<scalar_t>(),
            output.data_ptr<scalar_t>(),
            return_indices ? indices.data_ptr<int64_t>() : nullptr,
            batch_size, channels,
            input_d, input_h, input_w,
            output_d, output_h, output_w,
            kernel_size, stride, padding, dilation);
    }));

    if (return_indices) {
        return torch::stack({output, indices}, 0);
    }
    return output;
}

PYBIND11_MODULE(TORCH_EXTENSION_NAME, m) {
    m.def("forward", &max_pool3d_cuda_forward_opt_block, "Max Pool 3D forward with optimized block size (CUDA)");
}
Performance Metrics
Metric Value Unit Variance Samples
Executed Ipc Active 3.170 inst/cycle 0.000 5
Executed Ipc Elapsed 3.138 inst/cycle 0.000 5
Issue Slots Busy 79.186 % 0.000 5
Issued Ipc Active 3.170 inst/cycle 0.000 5
SM Busy 79.186 % 0.000 5
Memory Throughput 1164047744613.548 byte/second 770666966415497856.000 5
Mem Busy 34.658 % 0.000 5
Max Bandwidth 34.728 % 0.001 5
L1/TEX Hit Rate 75.640 % 0.000 5
L2 Hit Rate 33.416 % 0.000 5
Mem Pipes Busy 21.318 % 0.000 5
Warp Cycles Per Issued Instruction 17.712 cycle 0.000 5
Warp Cycles Per Executed Instruction 17.712 cycle 0.000 5
Avg. Active Threads Per Warp 31.090 0.000 5
Avg. Not Predicated Off Threads Per Warp 27.610 0.000 5
Max Active Clusters 0.000 cluster 0.000 5
Max Cluster Size 8.000 block 0.000 5
Overall GPU Occupancy 0.000 % 0.000 5
Cluster Occupancy 0.000 % 0.000 5
Block Limit SM 32.000 block 0.000 5
Block Limit Registers 4.000 block 0.000 5
Block Limit Shared Mem 16.000 block 0.000 5
Block Limit Warps 4.000 block 0.000 5
Theoretical Active Warps per SM 64.000 warp 0.000 5
Theoretical Occupancy 100.000 % 0.000 5
Achieved Occupancy 87.778 % 0.000 5
Achieved Active Warps Per SM 56.180 warp 0.000 5
Analysis Rules
Rule Description
WRN HighPipeUtilization ALU is the highest-utilized pipeline (64.0%) based on active cycles, taking into account the rates of its different instructions. It executes integer and logic operations. The pipeline is well-utilized, but might become a bottleneck if more work is added. Based on the number of executed instructions, the highest utilized pipeline (64.0%) is ALU. It executes integer and logic operations. Comparing the two, the overall pipeline utilization appears to be caused by frequent, low-latency instructions. See the Kernel Profiling Guide (https://docs.nvidia.com/nsight-compute/ProfilingGuide/index.html#metrics-decoder) or hover over the pipeline name to understand the workloads handled by each pipeline. The Instruction Statistics section shows the mix of executed instructions in this kernel. Check the Warp State Statistics section for which reasons cause warps to stall.
INF CPIStall Check the Warp Stall Sampling (All Cycles) table for the top stall locations in your source based on sampling data. The Kernel Profiling Guide (https://docs.nvidia.com/nsight-compute/ProfilingGuide/index.html#metrics-reference) provides more details on each stall reason.
WRN Occupancy This kernel's theoretical occupancy is not impacted by any block limit. The difference between calculated theoretical (100.0%) and measured achieved occupancy (87.8%) can be the result of warp scheduling overheads or workload imbalances during the kernel execution. Load imbalances can occur between warps within a block as well as across blocks of the same kernel. See the CUDA Best Practices Guide (https://docs.nvidia.com/cuda/cuda-c-best-practices-guide/index.html#occupancy) for more details on optimizing occupancy.
Operation / Metric Value Unit
aten::randn
CPU Time 599094.70 μs
Device Time 0.00 μs
Self CPU Time 114.81 μs
Self Device Time 0.00 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
aten::normal_
CPU Time 598945.25 μs
Device Time 0.00 μs
Self CPU Time 598945.25 μs
Self Device Time 0.00 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
aten::to
CPU Time 540762.10 μs
Device Time 57339.45 μs
Self CPU Time 40.49 μs
Self Device Time 0.00 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
cudaLaunchKernel
CPU Time 2503888.01 μs
Device Time 14783.38 μs
Self CPU Time 2503888.01 μs
Self Device Time 14783.38 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
void max_pool3d_forward_kernel_opt_block<float>(float const*, float*, long*, int, int, int, int, int, int, int, int, int, int, int, int)
CPU Time 0.00 μs
Device Time 2311100.79 μs
Self CPU Time 0.00 μs
Self Device Time 2311100.79 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
aten::zero_
CPU Time 2176461.64 μs
Device Time 442552.96 μs
Self CPU Time 12764.92 μs
Self Device Time 0.00 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
aten::fill_
CPU Time 2163700.22 μs
Device Time 442552.96 μs
Self CPU Time 14303.89 μs
Self Device Time 442552.96 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
void at::native::vectorized_elementwise_kernel<4, at::native::FillFunctor<int>, at::detail::Array<char*, 1> >(int, at::native::FillFunctor<int>, at::detail::Array<char*, 1>)
CPU Time 0.00 μs
Device Time 442552.96 μs
Self CPU Time 0.00 μs
Self Device Time 442552.96 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
Status: Completed
45304 warnings generated when compiling for host.
Suppressed 45327 warnings (45280 in non-user code, 47 NOLINT).
Use -header-filter=.* to display errors from all non-system headers. Use -system-headers to display errors from system headers as well.
/home/robert_sakana_ai/llm_cuda/experiments/20250201_optimize_b10_s4_e0_sweep/level_1/task_43/b2_s0_block_size_experimentation/base/base.cu:18:43 bugprone-easily-swappable-parameters
18 | const int input_d, const int input_h, const int input_w,
| ^~~~~~~~~~~~~~~~~~
19 | const int output_d, const int output_h, const int output_w,
| ~~~~~~~~~~~~~~~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250201_optimize_b10_s4_e0_sweep/level_1/task_43/b2_s0_block_size_experimentation/base/base.cu:18:53: note: the first parameter in the range is 'input_w'
18 | const int input_d, const int input_h, const int input_w,
| ^~~~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250201_optimize_b10_s4_e0_sweep/level_1/task_43/b2_s0_block_size_experimentation/base/base.cu:19:15: note: the last parameter in the range is 'output_d'
19 | const int output_d, const int output_h, const int output_w,
| ^~~~~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250201_optimize_b10_s4_e0_sweep/level_1/task_43/b2_s0_block_size_experimentation/base/base.cu:19:45: warning: 3 adjacent parameters of 'max_pool3d_forward_kernel_opt_block' of similar type ('const int') are easily swapped by mistake [bugprone-easily-swappable-parameters]
19 | const int output_d, const int output_h, const int output_w,
| ^~~~~~~~~~~~~~~~~~~
20 | const int kernel_size,
| ~~~~~~~~~~~~~~~~~~~~~~
21 | const int stride,
| ~~~~~~~~~~~~~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250201_optimize_b10_s4_e0_sweep/level_1/task_43/b2_s0_block_size_experimentation/base/base.cu:19:55: note: the first parameter in the range is 'output_w'
19 | const int output_d, const int output_h, const int output_w,
| ^~~~~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250201_optimize_b10_s4_e0_sweep/level_1/task_43/b2_s0_block_size_experimentation/base/base.cu:21:15: note: the last parameter in the range is 'stride'
21 | const int stride,
| ^~~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250201_optimize_b10_s4_e0_sweep/level_1/task_43/b2_s0_block_size_experimentation/base/base.cu:22:5: warning: 2 adjacent parameters of 'max_pool3d_forward_kernel_opt_block' of similar type ('const int') are easily swapped by mistake [bugprone-easily-swappable-parameters]
22 | const int padding,
| ^~~~~~~~~~~~~~~~~~
23 | const int dilation) {
| ~~~~~~~~~~~~~~~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250201_optimize_b10_s4_e0_sweep/level_1/task_43/b2_s0_block_size_experimentation/base/base.cu:22:15: note: the first parameter in the range is 'padding'
22 | const int padding,
| ^~~~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250201_optimize_b10_s4_e0_sweep/level_1/task_43/b2_s0_block_size_experimentation/base/base.cu:23:15: note: the last parameter in the range is 'dilation'
23 | const int dilation) {
| ^~~~~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250201_optimize_b10_s4_e0_sweep/level_1/task_43/b2_s0_block_size_experimentation/base/base.cu:25:21: warning: narrowing conversion from 'unsigned int' to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
25 | const int idx = blockIdx.x * blockDim.x + threadIdx.x;
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250201_optimize_b10_s4_e0_sweep/level_1/task_43/b2_s0_block_size_experimentation/base/base.cu:90:28: warning: narrowing conversion from 'long' to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
90 | const int batch_size = input_sizes[0];
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250201_optimize_b10_s4_e0_sweep/level_1/task_43/b2_s0_block_size_experimentation/base/base.cu:91:26: warning: narrowing conversion from 'long' to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
91 | const int channels = input_sizes[1];
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250201_optimize_b10_s4_e0_sweep/level_1/task_43/b2_s0_block_size_experimentation/base/base.cu:92:25: warning: narrowing conversion from 'long' to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
92 | const int input_d = input_sizes[2];
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250201_optimize_b10_s4_e0_sweep/level_1/task_43/b2_s0_block_size_experimentation/base/base.cu:93:25: warning: narrowing conversion from 'long' to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
93 | const int input_h = input_sizes[3];
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250201_optimize_b10_s4_e0_sweep/level_1/task_43/b2_s0_block_size_experimentation/base/base.cu:94:25: warning: narrowing conversion from 'long' to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
94 | const int input_w = input_sizes[4];
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250201_optimize_b10_s4_e0_sweep/level_1/task_43/b2_s0_block_size_experimentation/base/base.cu:98:9: warning: narrowing conversion from 'float' to 'int' [bugprone-narrowing-conversions]
98 | ceil((input_d + 2 * padding - dilation * (kernel_size - 1) - 1) / float(stride) + 1) :
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250201_optimize_b10_s4_e0_sweep/level_1/task_43/b2_s0_block_size_experimentation/base/base.cu:98:14: warning: narrowing conversion from 'int' to 'float' [bugprone-narrowing-conversions]
98 | ceil((input_d + 2 * padding - dilation * (kernel_size - 1) - 1) / float(stride) + 1) :
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250201_optimize_b10_s4_e0_sweep/level_1/task_43/b2_s0_block_size_experimentation/base/base.cu:99:9: warning: narrowing conversion from 'float' to 'int' [bugprone-narrowing-conversions]
99 | floor((input_d + 2 * padding - dilation * (kernel_size - 1) - 1) / float(stride) + 1);
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250201_optimize_b10_s4_e0_sweep/level_1/task_43/b2_s0_block_size_experimentation/base/base.cu:99:15: warning: narrowing conversion from 'int' to 'float' [bugprone-narrowing-conversions]
99 | floor((input_d + 2 * padding - dilation * (kernel_size - 1) - 1) / float(stride) + 1);
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250201_optimize_b10_s4_e0_sweep/level_1/task_43/b2_s0_block_size_experimentation/base/base.cu:101:9: warning: narrowing conversion from 'float' to 'int' [bugprone-narrowing-conversions]
101 | ceil((input_h + 2 * padding - dilation * (kernel_size - 1) - 1) / float(stride) + 1) :
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250201_optimize_b10_s4_e0_sweep/level_1/task_43/b2_s0_block_size_experimentation/base/base.cu:101:14: warning: narrowing conversion from 'int' to 'float' [bugprone-narrowing-conversions]
101 | ceil((input_h + 2 * padding - dilation * (kernel_size - 1) - 1) / float(stride) + 1) :
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250201_optimize_b10_s4_e0_sweep/level_1/task_43/b2_s0_block_size_experimentation/base/base.cu:102:9: warning: narrowing conversion from 'float' to 'int' [bugprone-narrowing-conversions]
102 | floor((input_h + 2 * padding - dilation * (kernel_size - 1) - 1) / float(stride) + 1);
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250201_optimize_b10_s4_e0_sweep/level_1/task_43/b2_s0_block_size_experimentation/base/base.cu:102:15: warning: narrowing conversion from 'int' to 'float' [bugprone-narrowing-conversions]
102 | floor((input_h + 2 * padding - dilation * (kernel_size - 1) - 1) / float(stride) + 1);
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250201_optimize_b10_s4_e0_sweep/level_1/task_43/b2_s0_block_size_experimentation/base/base.cu:104:9: warning: narrowing conversion from 'float' to 'int' [bugprone-narrowing-conversions]
104 | ceil((input_w + 2 * padding - dilation * (kernel_size - 1) - 1) / float(stride) + 1) :
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250201_optimize_b10_s4_e0_sweep/level_1/task_43/b2_s0_block_size_experimentation/base/base.cu:104:14: warning: narrowing conversion from 'int' to 'float' [bugprone-narrowing-conversions]
104 | ceil((input_w + 2 * padding - dilation * (kernel_size - 1) - 1) / float(stride) + 1) :
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250201_optimize_b10_s4_e0_sweep/level_1/task_43/b2_s0_block_size_experimentation/base/base.cu:105:9: warning: narrowing conversion from 'float' to 'int' [bugprone-narrowing-conversions]
105 | floor((input_w + 2 * padding - dilation * (kernel_size - 1) - 1) / float(stride) + 1);
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250201_optimize_b10_s4_e0_sweep/level_1/task_43/b2_s0_block_size_experimentation/base/base.cu:105:15: warning: narrowing conversion from 'int' to 'float' [bugprone-narrowing-conversions]
105 | floor((input_w + 2 * padding - dilation * (kernel_size - 1) - 1) / float(stride) + 1);
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250201_optimize_b10_s4_e0_sweep/level_1/task_43/b2_s0_block_size_experimentation/base/base.cu:117:5: warning: inside a lambda, '__func__' expands to the name of the function call operator; consider capturing the name of the enclosing function explicitly [bugprone-lambda-function-name]
117 | AT_DISPATCH_FLOATING_TYPES(input.scalar_type(), "max_pool3d_forward_cuda_opt_block", ([&] {
| ^
/home/robert_sakana_ai/miniconda3/envs/llm2cuda/lib/python3.11/site-packages/torch/include/ATen/Dispatch.h:237:34: note: expanded from macro 'AT_DISPATCH_FLOATING_TYPES'
237 | AT_DISPATCH_SWITCH(TYPE, NAME, AT_DISPATCH_CASE_FLOATING_TYPES(__VA_ARGS__))
| ^
/home/robert_sakana_ai/miniconda3/envs/llm2cuda/lib/python3.11/site-packages/torch/include/ATen/Dispatch.h:233:3: note: expanded from macro 'AT_DISPATCH_CASE_FLOATING_TYPES'
233 | AT_DISPATCH_CASE(at::ScalarType::Double, __VA_ARGS__) \
| ^
/home/robert_sakana_ai/miniconda3/envs/llm2cuda/lib/python3.11/site-packages/torch/include/ATen/Dispatch.h:74:3: note: expanded from macro 'AT_DISPATCH_CASE'
74 | AT_PRIVATE_CASE_TYPE_USING_HINT(enum_type, scalar_t, __VA_ARGS__)
| ^
note: (skipping 1 expansions in backtrace; use -fmacro-backtrace-limit=0 to see all)
/home/robert_sakana_ai/miniconda3/envs/llm2cuda/lib/python3.11/site-packages/torch/include/ATen/Dispatch.h:58:7: note: expanded from macro 'AT_PRIVATE_CHECK_SELECTIVE_BUILD'
58 | AT_ERROR( \
| ^
/home/robert_sakana_ai/miniconda3/envs/llm2cuda/lib/python3.11/site-packages/torch/include/c10/util/Exception.h:711:32: note: expanded from macro 'AT_ERROR'
711 | C10_EXPAND_MSVC_WORKAROUND(TORCH_CHECK(false, ::c10::str(__VA_ARGS__))); \
| ^
/home/robert_sakana_ai/miniconda3/envs/llm2cuda/lib/python3.11/site-packages/torch/include/c10/util/Exception.h:536:9: note: expanded from macro 'TORCH_CHECK'
536 | __func__, \
| ^