← Back to Leaderboard

The AI CUDA Engineer 👷

45_Average_Pooling_2Dmanual_unroll_avg_pool2d_base

Level 1 • Task 45
import torch
import torch.nn as nn
import torch.nn.functional as F


def module_fn(
    x: torch.Tensor, kernel_size: int, stride: int, padding: int
) -> torch.Tensor:
    """
    Applies 2D Average Pooling using functional interface.

    Args:
        x (torch.Tensor): Input tensor
        kernel_size (int): Size of pooling window
        stride (int): Stride of pooling operation
        padding (int): Input padding

    Returns:
        torch.Tensor: Output tensor with 2D Average Pooling applied
    """
    return F.avg_pool2d(x, kernel_size=kernel_size, stride=stride, padding=padding)


class Model(nn.Module):
    """
    Simple model that performs 2D Average Pooling.
    """

    def __init__(self, kernel_size: int, stride: int, padding: int):
        """
        Initializes the Average Pooling layer.

        Args:
            kernel_size (int): Size of the pooling window
            stride (int): Stride of the pooling operation
            padding (int): Padding applied to input tensor
        """
        super(Model, self).__init__()
        self.kernel_size = kernel_size
        self.stride = stride
        self.padding = padding

    def forward(self, x: torch.Tensor, fn=module_fn) -> torch.Tensor:
        """
        Applies 2D Average Pooling to the input tensor.

        Args:
            x (torch.Tensor): Input tensor of shape (batch_size, channels, height, width)
            fn: Function to apply pooling operation, defaults to module_fn

        Returns:
            torch.Tensor: Output tensor with Average Pooling applied
        """
        return fn(
            x,
            self.kernel_size,
            self.stride,
            self.padding,
        )


batch_size = 16
channels = 64
height = 256
width = 256
kernel_size = 3
stride = None  # Defaults to kernel_size
padding = 0


def get_inputs():
    x = torch.randn(batch_size, channels, height, width)
    return [x]


def get_init_inputs():
    return [kernel_size, stride if stride is not None else kernel_size, padding]
import torch
import torch.nn as nn


class Model(nn.Module):
    """
    Simple model that performs 2D Average Pooling.
    """

    def __init__(self, kernel_size: int, stride: int = None, padding: int = 0):
        """
        Initializes the Average Pooling layer.

        Args:
            kernel_size (int): Size of the pooling window.
            stride (int, optional): Stride of the pooling operation. Defaults to None (same as kernel_size).
            padding (int, optional): Padding applied to the input tensor. Defaults to 0.
        """
        super(Model, self).__init__()
        self.avg_pool = nn.AvgPool2d(
            kernel_size=kernel_size, stride=stride, padding=padding
        )

    def forward(self, x: torch.Tensor) -> torch.Tensor:
        """
        Applies 2D Average Pooling to the input tensor.

        Args:
            x (torch.Tensor): Input tensor of shape (batch_size, channels, height, width).

        Returns:
            torch.Tensor: Output tensor with Average Pooling applied.
        """
        return self.avg_pool(x)


batch_size = 16
channels = 64
height = 256
width = 256
kernel_size = 3
stride = None  # Defaults to kernel_size
padding = 0


def get_inputs():
    x = torch.randn(batch_size, channels, height, width)
    return [x]


def get_init_inputs():
    return [kernel_size, stride if stride is not None else kernel_size, padding]

Kernel Information

Related Kernels (Level 1, Task 45 • 45_Average_Pooling_2D)

Rank Kernel Name Runtime (ms) Speedup Native Speedup Compile
🥇 unrolled_avg_pool2d_base 0.11 1.94 3.03
🥇 modular_avg_pool2d_base_base 0.11 1.94 3.03
🥇 grid_stride_manual_unroll_base 0.11 1.94 3.03
🥇 optimized_avg_pool2d_base 0.11 1.94 3.03
🥇 manual_unroll_avg_pool2d_base 0.11 1.94 3.03
🥇 efficient_avg_pool_base 0.11 1.94 3.03
🥇 constant_memory_avg_pool2d_base 0.11 1.94 3.03
🥇 even_workload_avg_pool2d_base 0.11 1.94 3.03
🥇 unrolled_optimized_avg_pool2d_base 0.11 1.94 3.03
10 warp_uniform_flow_base_base 0.11 1.83 2.87
10 optimized_avg_pool2d_base 0.11 1.83 2.87
10 grid_stride_avg_pool2d_base_base 0.11 1.83 2.87
10 warp_uniform_flow_base_edit_1 0.11 1.83 2.87
14 stride_optimized_avg_pool2d_base 0.12 1.82 2.84
14 warp_divergence_avg_pool2d_base 0.12 1.82 2.84
14 stride_loop_avg_pool2d_base 0.12 1.82 2.84
14 grid_unrolled_avg_pool2d_base 0.12 1.82 2.84
18 combined_avg_pool_base 0.12 1.80 2.82
18 spatial_block_optimized_base_base 0.12 1.80 2.82
18 spatial_block_optimized_base_edit_1 0.12 1.80 2.82
#include <torch/extension.h>
#include <cuda.h>
#include <cuda_runtime.h>

// This kernel manually unrolls the inner loops for the common 3x3 pooling case
// to reduce loop overhead. For other kernel sizes or boundary cases, it falls back
// to a generic loop with #pragma unroll hints.

template <typename scalar_t>
__global__ void manual_unroll_avg_pool2d_kernel(
    const scalar_t* __restrict__ input,
    scalar_t* __restrict__ output,
    const int N,
    const int C,
    const int H,
    const int W,
    const int outH,
    const int outW,
    const int kernel_size,
    const int stride,
    const int padding
) {
    // Map threads to output pixel positions using a 2D grid and use blockIdx.z for combined (n, c)
    int out_x = blockIdx.x * blockDim.x + threadIdx.x;
    int out_y = blockIdx.y * blockDim.y + threadIdx.y;
    int nc = blockIdx.z;
    int n = nc / C;
    int c = nc % C;

    if (out_x >= outW || out_y >= outH)
        return;

    // Compute starting point in the input tensor
    int in_x_start = out_x * stride - padding;
    int in_y_start = out_y * stride - padding;
    scalar_t sum = scalar_t(0);

    // Check if the pooling window is completely inside the input
    bool fully_inside = (in_x_start >= 0) && (in_y_start >= 0) &&
                        ((in_x_start + kernel_size) <= W) &&
                        ((in_y_start + kernel_size) <= H);

    // Compute the output index
    int out_index = ((n * C + c) * outH + out_y) * outW + out_x;

    // Fast path: if kernel_size is 3 and the window is fully inside, manually unroll loops
    if (kernel_size == 3 && fully_inside) {
        int base = (n * C + c) * H;
        int ix = in_x_start;
        int row0 = base + in_y_start;
        int row1 = base + in_y_start + 1;
        int row2 = base + in_y_start + 2;
        sum = input[row0 * W + ix]     + input[row0 * W + ix + 1]     + input[row0 * W + ix + 2] +
              input[row1 * W + ix]     + input[row1 * W + ix + 1]     + input[row1 * W + ix + 2] +
              input[row2 * W + ix]     + input[row2 * W + ix + 1]     + input[row2 * W + ix + 2];
    } else {
        // Generic path with #pragma unroll hint for small kernel sizes
        #pragma unroll
        for (int ky = 0; ky < kernel_size; ky++) {
            int y = in_y_start + ky;
            #pragma unroll
            for (int kx = 0; kx < kernel_size; kx++) {
                int x = in_x_start + kx;
                if (y >= 0 && y < H && x >= 0 && x < W) {
                    int index_in = ((n * C + c) * H + y) * W + x;
                    sum += input[index_in];
                }
            }
        }
    }

    output[out_index] = sum / static_cast<scalar_t>(kernel_size * kernel_size);
}

// Forward function exposed to PyTorch

torch::Tensor manual_unroll_avg_pool2d_forward(
    torch::Tensor x,
    int kernel_size,
    int stride,
    int padding
) {
    TORCH_CHECK(x.dim() == 4, "Input must be a 4D tensor.");
    
    const int N = x.size(0);
    const int C = x.size(1);
    const int H = x.size(2);
    const int W = x.size(3);
    const int outH = (H + 2 * padding - kernel_size) / stride + 1;
    const int outW = (W + 2 * padding - kernel_size) / stride + 1;
    
    auto x_cont = x.contiguous();
    auto options = x.options();
    auto output = torch::empty({N, C, outH, outW}, options);
    
    // Use a 2D block for spatial dimensions and gridDim.z for the combined N*C dimension
    dim3 threads(32, 8);
    dim3 blocks(
        (outW + threads.x - 1) / threads.x,
        (outH + threads.y - 1) / threads.y,
        N * C
    );
    
    AT_DISPATCH_FLOATING_TYPES(x.scalar_type(), "manual_unroll_avg_pool2d_kernel", ([&] {
        manual_unroll_avg_pool2d_kernel<scalar_t><<<blocks, threads>>>(
            x_cont.data_ptr<scalar_t>(),
            output.data_ptr<scalar_t>(),
            N, C, H, W,
            outH, outW,
            kernel_size, stride, padding
        );
    }));
    
    cudaError_t err = cudaGetLastError();
    TORCH_CHECK(err == cudaSuccess, "CUDA Error: ", cudaGetErrorString(err));
    
    return output;
}

PYBIND11_MODULE(TORCH_EXTENSION_NAME, m) {
    m.def("forward", &manual_unroll_avg_pool2d_forward, "Manual Unroll 2D Average Pooling forward (CUDA)");
}
Performance Metrics
Metric Value Unit Variance Samples
Executed Ipc Active 0.874 inst/cycle 0.000 5
Executed Ipc Elapsed 0.842 inst/cycle 0.000 5
Issue Slots Busy 21.922 % 0.013 5
Issued Ipc Active 0.876 inst/cycle 0.000 5
SM Busy 21.922 % 0.013 5
Memory Throughput 3017520786118.460 byte/second 103011775809610088448.000 5
Mem Busy 51.678 % 0.029 5
Max Bandwidth 90.042 % 0.090 5
L1/TEX Hit Rate 63.788 % 0.000 5
L2 Hit Rate 12.772 % 0.002 5
Mem Pipes Busy 20.900 % 0.007 5
Warp Cycles Per Issued Instruction 59.542 cycle 0.083 5
Warp Cycles Per Executed Instruction 59.710 cycle 0.085 5
Avg. Active Threads Per Warp 29.090 0.000 5
Avg. Not Predicated Off Threads Per Warp 28.650 0.000 5
Max Active Clusters 0.000 cluster 0.000 5
Max Cluster Size 8.000 block 0.000 5
Overall GPU Occupancy 0.000 % 0.000 5
Cluster Occupancy 0.000 % 0.000 5
Block Limit SM 32.000 block 0.000 5
Block Limit Registers 8.000 block 0.000 5
Block Limit Shared Mem 32.000 block 0.000 5
Block Limit Warps 8.000 block 0.000 5
Theoretical Active Warps per SM 64.000 warp 0.000 5
Theoretical Occupancy 100.000 % 0.000 5
Achieved Occupancy 82.332 % 0.021 5
Achieved Active Warps Per SM 52.692 warp 0.009 5
Analysis Rules
Rule Description
WRN HighPipeUtilization All compute pipelines are under-utilized. Either this kernel is very small or it doesn't issue enough warps per scheduler. Check the Launch Statistics and Scheduler Statistics sections for further details.
INF CPIStall Check the Warp Stall Sampling (All Cycles) table for the top stall locations in your source based on sampling data. The Kernel Profiling Guide (https://docs.nvidia.com/nsight-compute/ProfilingGuide/index.html#metrics-reference) provides more details on each stall reason.
WRN Occupancy This kernel's theoretical occupancy is not impacted by any block limit. The difference between calculated theoretical (100.0%) and measured achieved occupancy (82.4%) can be the result of warp scheduling overheads or workload imbalances during the kernel execution. Load imbalances can occur between warps within a block as well as across blocks of the same kernel. See the CUDA Best Practices Guide (https://docs.nvidia.com/cuda/cuda-c-best-practices-guide/index.html#occupancy) for more details on optimizing occupancy.
Operation / Metric Value Unit
aten::to
CPU Time 382901.93 μs
Device Time 27217.13 μs
Self CPU Time 35.30 μs
Self Device Time 0.00 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
aten::_to_copy
CPU Time 382866.63 μs
Device Time 27217.13 μs
Self CPU Time 97.16 μs
Self Device Time 0.00 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
cudaLaunchKernel
CPU Time 1183519.86 μs
Device Time 57755.01 μs
Self CPU Time 1183519.86 μs
Self Device Time 57755.01 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
void manual_unroll_avg_pool2d_kernel<float>(float const*, float*, int, int, int, int, int, int, int, int, int)
CPU Time 0.00 μs
Device Time 790469.58 μs
Self CPU Time 0.00 μs
Self Device Time 790469.58 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
aten::zero_
CPU Time 722719.40 μs
Device Time 591017.94 μs
Self CPU Time 13138.36 μs
Self Device Time 0.00 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
aten::fill_
CPU Time 709582.55 μs
Device Time 591017.94 μs
Self CPU Time 16429.69 μs
Self Device Time 591017.94 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
void at::native::vectorized_elementwise_kernel<4, at::native::FillFunctor<int>, at::detail::Array<char*, 1> >(int, at::native::FillFunctor<int>, at::detail::Array<char*, 1>)
CPU Time 0.00 μs
Device Time 591017.94 μs
Self CPU Time 0.00 μs
Self Device Time 591017.94 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
Status: Completed
45290 warnings generated when compiling for host.
Suppressed 45324 warnings (45277 in non-user code, 47 NOLINT).
Use -header-filter=.* to display errors from all non-system headers. Use -system-headers to display errors from system headers as well.
/home/robert_sakana_ai/llm_cuda/experiments/20250201_optimize_b10_s4_e0_sweep/level_1/task_45/b5_s2_manual_unroll_avg_pool2d/base/base.cu:13:5 bugprone-easily-swappable-parameters
13 | const int N,
| ^~~~~~~~~~~~
14 | const int C,
| ~~~~~~~~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250201_optimize_b10_s4_e0_sweep/level_1/task_45/b5_s2_manual_unroll_avg_pool2d/base/base.cu:13:15: note: the first parameter in the range is 'N'
13 | const int N,
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250201_optimize_b10_s4_e0_sweep/level_1/task_45/b5_s2_manual_unroll_avg_pool2d/base/base.cu:14:15: note: the last parameter in the range is 'C'
14 | const int C,
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250201_optimize_b10_s4_e0_sweep/level_1/task_45/b5_s2_manual_unroll_avg_pool2d/base/base.cu:16:5: warning: 2 adjacent parameters of 'manual_unroll_avg_pool2d_kernel' of similar type ('const int') are easily swapped by mistake [bugprone-easily-swappable-parameters]
16 | const int W,
| ^~~~~~~~~~~~
17 | const int outH,
| ~~~~~~~~~~~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250201_optimize_b10_s4_e0_sweep/level_1/task_45/b5_s2_manual_unroll_avg_pool2d/base/base.cu:16:15: note: the first parameter in the range is 'W'
16 | const int W,
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250201_optimize_b10_s4_e0_sweep/level_1/task_45/b5_s2_manual_unroll_avg_pool2d/base/base.cu:17:15: note: the last parameter in the range is 'outH'
17 | const int outH,
| ^~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250201_optimize_b10_s4_e0_sweep/level_1/task_45/b5_s2_manual_unroll_avg_pool2d/base/base.cu:18:5: warning: 3 adjacent parameters of 'manual_unroll_avg_pool2d_kernel' of similar type ('const int') are easily swapped by mistake [bugprone-easily-swappable-parameters]
18 | const int outW,
| ^~~~~~~~~~~~~~~
19 | const int kernel_size,
| ~~~~~~~~~~~~~~~~~~~~~~
20 | const int stride,
| ~~~~~~~~~~~~~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250201_optimize_b10_s4_e0_sweep/level_1/task_45/b5_s2_manual_unroll_avg_pool2d/base/base.cu:18:15: note: the first parameter in the range is 'outW'
18 | const int outW,
| ^~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250201_optimize_b10_s4_e0_sweep/level_1/task_45/b5_s2_manual_unroll_avg_pool2d/base/base.cu:20:15: note: the last parameter in the range is 'stride'
20 | const int stride,
| ^~~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250201_optimize_b10_s4_e0_sweep/level_1/task_45/b5_s2_manual_unroll_avg_pool2d/base/base.cu:24:17: warning: narrowing conversion from 'unsigned int' to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
24 | int out_x = blockIdx.x * blockDim.x + threadIdx.x;
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250201_optimize_b10_s4_e0_sweep/level_1/task_45/b5_s2_manual_unroll_avg_pool2d/base/base.cu:25:17: warning: narrowing conversion from 'unsigned int' to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
25 | int out_y = blockIdx.y * blockDim.y + threadIdx.y;
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250201_optimize_b10_s4_e0_sweep/level_1/task_45/b5_s2_manual_unroll_avg_pool2d/base/base.cu:26:14: warning: narrowing conversion from 'unsigned int' to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
26 | int nc = blockIdx.z;
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250201_optimize_b10_s4_e0_sweep/level_1/task_45/b5_s2_manual_unroll_avg_pool2d/base/base.cu:85:19: warning: narrowing conversion from 'int64_t' (aka 'long') to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
85 | const int N = x.size(0);
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250201_optimize_b10_s4_e0_sweep/level_1/task_45/b5_s2_manual_unroll_avg_pool2d/base/base.cu:86:19: warning: narrowing conversion from 'int64_t' (aka 'long') to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
86 | const int C = x.size(1);
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250201_optimize_b10_s4_e0_sweep/level_1/task_45/b5_s2_manual_unroll_avg_pool2d/base/base.cu:87:19: warning: narrowing conversion from 'int64_t' (aka 'long') to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
87 | const int H = x.size(2);
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250201_optimize_b10_s4_e0_sweep/level_1/task_45/b5_s2_manual_unroll_avg_pool2d/base/base.cu:88:19: warning: narrowing conversion from 'int64_t' (aka 'long') to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
88 | const int W = x.size(3);
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250201_optimize_b10_s4_e0_sweep/level_1/task_45/b5_s2_manual_unroll_avg_pool2d/base/base.cu:104:5: warning: inside a lambda, '__func__' expands to the name of the function call operator; consider capturing the name of the enclosing function explicitly [bugprone-lambda-function-name]
104 | AT_DISPATCH_FLOATING_TYPES(x.scalar_type(), "manual_unroll_avg_pool2d_kernel", ([&] {
| ^
/home/robert_sakana_ai/miniconda3/envs/llm2cuda/lib/python3.11/site-packages/torch/include/ATen/Dispatch.h:237:34: note: expanded from macro 'AT_DISPATCH_FLOATING_TYPES'
237 | AT_DISPATCH_SWITCH(TYPE, NAME, AT_DISPATCH_CASE_FLOATING_TYPES(__VA_ARGS__))
| ^
/home/robert_sakana_ai/miniconda3/envs/llm2cuda/lib/python3.11/site-packages/torch/include/ATen/Dispatch.h:233:3: note: expanded from macro 'AT_DISPATCH_CASE_FLOATING_TYPES'
233 | AT_DISPATCH_CASE(at::ScalarType::Double, __VA_ARGS__) \
| ^
/home/robert_sakana_ai/miniconda3/envs/llm2cuda/lib/python3.11/site-packages/torch/include/ATen/Dispatch.h:74:3: note: expanded from macro 'AT_DISPATCH_CASE'
74 | AT_PRIVATE_CASE_TYPE_USING_HINT(enum_type, scalar_t, __VA_ARGS__)
| ^
note: (skipping 1 expansions in backtrace; use -fmacro-backtrace-limit=0 to see all)
/home/robert_sakana_ai/miniconda3/envs/llm2cuda/lib/python3.11/site-packages/torch/include/ATen/Dispatch.h:58:7: note: expanded from macro 'AT_PRIVATE_CHECK_SELECTIVE_BUILD'
58 | AT_ERROR( \
| ^
/home/robert_sakana_ai/miniconda3/envs/llm2cuda/lib/python3.11/site-packages/torch/include/c10/util/Exception.h:711:32: note: expanded from macro 'AT_ERROR'
711 | C10_EXPAND_MSVC_WORKAROUND(TORCH_CHECK(false, ::c10::str(__VA_ARGS__))); \
| ^
/home/robert_sakana_ai/miniconda3/envs/llm2cuda/lib/python3.11/site-packages/torch/include/c10/util/Exception.h:536:9: note: expanded from macro 'TORCH_CHECK'
536 | __func__, \
| ^