← Back to Leaderboard

The AI CUDA Engineer 👷

45_Average_Pooling_2Doptimized_avg_pool2d_base

Level 1 • Task 45
import torch
import torch.nn as nn
import torch.nn.functional as F


def module_fn(
    x: torch.Tensor, kernel_size: int, stride: int, padding: int
) -> torch.Tensor:
    """
    Applies 2D Average Pooling using functional interface.

    Args:
        x (torch.Tensor): Input tensor
        kernel_size (int): Size of pooling window
        stride (int): Stride of pooling operation
        padding (int): Input padding

    Returns:
        torch.Tensor: Output tensor with 2D Average Pooling applied
    """
    return F.avg_pool2d(x, kernel_size=kernel_size, stride=stride, padding=padding)


class Model(nn.Module):
    """
    Simple model that performs 2D Average Pooling.
    """

    def __init__(self, kernel_size: int, stride: int, padding: int):
        """
        Initializes the Average Pooling layer.

        Args:
            kernel_size (int): Size of the pooling window
            stride (int): Stride of the pooling operation
            padding (int): Padding applied to input tensor
        """
        super(Model, self).__init__()
        self.kernel_size = kernel_size
        self.stride = stride
        self.padding = padding

    def forward(self, x: torch.Tensor, fn=module_fn) -> torch.Tensor:
        """
        Applies 2D Average Pooling to the input tensor.

        Args:
            x (torch.Tensor): Input tensor of shape (batch_size, channels, height, width)
            fn: Function to apply pooling operation, defaults to module_fn

        Returns:
            torch.Tensor: Output tensor with Average Pooling applied
        """
        return fn(
            x,
            self.kernel_size,
            self.stride,
            self.padding,
        )


batch_size = 16
channels = 64
height = 256
width = 256
kernel_size = 3
stride = None  # Defaults to kernel_size
padding = 0


def get_inputs():
    x = torch.randn(batch_size, channels, height, width)
    return [x]


def get_init_inputs():
    return [kernel_size, stride if stride is not None else kernel_size, padding]
import torch
import torch.nn as nn


class Model(nn.Module):
    """
    Simple model that performs 2D Average Pooling.
    """

    def __init__(self, kernel_size: int, stride: int = None, padding: int = 0):
        """
        Initializes the Average Pooling layer.

        Args:
            kernel_size (int): Size of the pooling window.
            stride (int, optional): Stride of the pooling operation. Defaults to None (same as kernel_size).
            padding (int, optional): Padding applied to the input tensor. Defaults to 0.
        """
        super(Model, self).__init__()
        self.avg_pool = nn.AvgPool2d(
            kernel_size=kernel_size, stride=stride, padding=padding
        )

    def forward(self, x: torch.Tensor) -> torch.Tensor:
        """
        Applies 2D Average Pooling to the input tensor.

        Args:
            x (torch.Tensor): Input tensor of shape (batch_size, channels, height, width).

        Returns:
            torch.Tensor: Output tensor with Average Pooling applied.
        """
        return self.avg_pool(x)


batch_size = 16
channels = 64
height = 256
width = 256
kernel_size = 3
stride = None  # Defaults to kernel_size
padding = 0


def get_inputs():
    x = torch.randn(batch_size, channels, height, width)
    return [x]


def get_init_inputs():
    return [kernel_size, stride if stride is not None else kernel_size, padding]

Kernel Information

Related Kernels (Level 1, Task 45 • 45_Average_Pooling_2D)

Rank Kernel Name Runtime (ms) Speedup Native Speedup Compile
🥇 unrolled_avg_pool2d_base 0.11 1.94 3.03
🥇 modular_avg_pool2d_base_base 0.11 1.94 3.03
🥇 grid_stride_manual_unroll_base 0.11 1.94 3.03
🥇 optimized_avg_pool2d_base 0.11 1.94 3.03
🥇 manual_unroll_avg_pool2d_base 0.11 1.94 3.03
🥇 efficient_avg_pool_base 0.11 1.94 3.03
🥇 constant_memory_avg_pool2d_base 0.11 1.94 3.03
🥇 even_workload_avg_pool2d_base 0.11 1.94 3.03
🥇 unrolled_optimized_avg_pool2d_base 0.11 1.94 3.03
10 warp_uniform_flow_base_base 0.11 1.83 2.87
10 optimized_avg_pool2d_base 0.11 1.83 2.87
10 grid_stride_avg_pool2d_base_base 0.11 1.83 2.87
10 warp_uniform_flow_base_edit_1 0.11 1.83 2.87
14 stride_optimized_avg_pool2d_base 0.12 1.82 2.84
14 warp_divergence_avg_pool2d_base 0.12 1.82 2.84
14 stride_loop_avg_pool2d_base 0.12 1.82 2.84
14 grid_unrolled_avg_pool2d_base 0.12 1.82 2.84
18 combined_avg_pool_base 0.12 1.80 2.82
18 spatial_block_optimized_base_base 0.12 1.80 2.82
18 spatial_block_optimized_base_edit_1 0.12 1.80 2.82
#include <torch/extension.h>
#include <cuda.h>
#include <cuda_runtime.h>

// Optimized kernel that combines manual unrolling and efficient boundary checks

template <typename scalar_t>
__global__ void optimized_avg_pool2d_kernel(
    const scalar_t* __restrict__ input,
    scalar_t* __restrict__ output,
    const int N,
    const int C,
    const int H,
    const int W,
    const int outH,
    const int outW,
    const int kernel_size,
    const int stride,
    const int padding
) {
    // Map threads in a 2D block to output spatial dimensions
    const int tid_x = threadIdx.x;
    const int tid_y = threadIdx.y;
    const int out_x = blockIdx.x * blockDim.x + tid_x;
    const int out_y = blockIdx.y * blockDim.y + tid_y;

    // Use blockIdx.z to cover the (N * C) dimension
    const int nc = blockIdx.z;
    const int n = nc / C;
    const int c = nc % C;

    if (out_x >= outW || out_y >= outH)
        return;

    // Calculate the starting coordinates in the input corresponding to the output pixel
    const int in_x_start = out_x * stride - padding;
    const int in_y_start = out_y * stride - padding;
    const int in_x_end = in_x_start + kernel_size;
    const int in_y_end = in_y_start + kernel_size;

    scalar_t sum = scalar_t(0);

    // Fast path: if kernel_size is 3 and the window is fully inside, manually unroll loops
    if (kernel_size == 3 && in_x_start >= 0 && in_y_start >= 0 && in_x_end <= W && in_y_end <= H) {
        int base = (n * C + c) * H;
        int ix = in_x_start;
        int row0 = base + in_y_start;
        int row1 = base + in_y_start + 1;
        int row2 = base + in_y_start + 2;
        sum = input[row0 * W + ix]     + input[row0 * W + ix + 1]     + input[row0 * W + ix + 2] +
              input[row1 * W + ix]     + input[row1 * W + ix + 1]     + input[row1 * W + ix + 2] +
              input[row2 * W + ix]     + input[row2 * W + ix + 1]     + input[row2 * W + ix + 2];
    } else {
        // For border cases, check boundaries per element
        #pragma unroll
        for (int ky = 0; ky < kernel_size; ky++) {
            int y = in_y_start + ky;
            #pragma unroll
            for (int kx = 0; kx < kernel_size; kx++) {
                int x = in_x_start + kx;
                if (y >= 0 && y < H && x >= 0 && x < W) {
                    int offset = ((n * C + c) * H + y) * W + x;
                    sum += input[offset];
                }
            }
        }
    }

    const int out_idx = ((n * C + c) * outH + out_y) * outW + out_x;
    output[out_idx] = sum / static_cast<scalar_t>(kernel_size * kernel_size);
}


// Forward function exposed to PyTorch
torch::Tensor optimized_avg_pool2d_forward(
    torch::Tensor x,
    int kernel_size,
    int stride,
    int padding
) {
    TORCH_CHECK(x.dim() == 4, "Input must be a 4D tensor.");
    
    const int N = x.size(0);
    const int C = x.size(1);
    const int H = x.size(2);
    const int W = x.size(3);
    
    // Calculate output dimensions
    const int outH = (H + 2 * padding - kernel_size) / stride + 1;
    const int outW = (W + 2 * padding - kernel_size) / stride + 1;
    
    auto x_cont = x.contiguous();
    auto options = x.options();
    auto output = torch::empty({N, C, outH, outW}, options);
    
    // Configure 2D thread blocks and grid over spatial outputs and combined N * C in blockIdx.z
    dim3 threads(32, 8);
    dim3 blocks(
        (outW + threads.x - 1) / threads.x,
        (outH + threads.y - 1) / threads.y,
        N * C
    );
    
    AT_DISPATCH_FLOATING_TYPES(x.scalar_type(), "optimized_avg_pool2d_kernel", ([&] {
        optimized_avg_pool2d_kernel<scalar_t><<<blocks, threads>>>(
            x_cont.data_ptr<scalar_t>(),
            output.data_ptr<scalar_t>(),
            N, C, H, W,
            outH, outW,
            kernel_size, stride, padding
        );
    }));
    
    cudaError_t err = cudaGetLastError();
    TORCH_CHECK(err == cudaSuccess, "CUDA Error: ", cudaGetErrorString(err));

    return output;
}

PYBIND11_MODULE(TORCH_EXTENSION_NAME, m) {
    m.def("forward", &optimized_avg_pool2d_forward, "Optimized 2D Average Pooling forward (CUDA)");
}
Performance Metrics
Metric Value Unit Variance Samples
Executed Ipc Active 1.302 inst/cycle 0.000 5
Executed Ipc Elapsed 1.252 inst/cycle 0.000 5
Issue Slots Busy 32.580 % 0.008 5
Issued Ipc Active 1.302 inst/cycle 0.000 5
SM Busy 32.580 % 0.008 5
Memory Throughput 3023019499035.417 byte/second 117176213441617821696.000 5
Mem Busy 51.788 % 0.044 5
Max Bandwidth 90.216 % 0.108 5
L1/TEX Hit Rate 63.780 % 0.000 5
L2 Hit Rate 12.780 % 0.002 5
Mem Pipes Busy 23.716 % 0.003 5
Warp Cycles Per Issued Instruction 40.064 cycle 0.102 5
Warp Cycles Per Executed Instruction 40.104 cycle 0.102 5
Avg. Active Threads Per Warp 29.510 0.000 5
Avg. Not Predicated Off Threads Per Warp 27.760 0.000 5
Max Active Clusters 0.000 cluster 0.000 5
Max Cluster Size 8.000 block 0.000 5
Overall GPU Occupancy 0.000 % 0.000 5
Cluster Occupancy 0.000 % 0.000 5
Block Limit SM 32.000 block 0.000 5
Block Limit Registers 8.000 block 0.000 5
Block Limit Shared Mem 32.000 block 0.000 5
Block Limit Warps 8.000 block 0.000 5
Theoretical Active Warps per SM 64.000 warp 0.000 5
Theoretical Occupancy 100.000 % 0.000 5
Achieved Occupancy 81.958 % 0.033 5
Achieved Active Warps Per SM 52.454 warp 0.014 5
Analysis Rules
Rule Description
WRN HighPipeUtilization All compute pipelines are under-utilized. Either this kernel is very small or it doesn't issue enough warps per scheduler. Check the Launch Statistics and Scheduler Statistics sections for further details.
INF CPIStall Check the Warp Stall Sampling (All Cycles) table for the top stall locations in your source based on sampling data. The Kernel Profiling Guide (https://docs.nvidia.com/nsight-compute/ProfilingGuide/index.html#metrics-reference) provides more details on each stall reason.
WRN Occupancy This kernel's theoretical occupancy is not impacted by any block limit. The difference between calculated theoretical (100.0%) and measured achieved occupancy (81.6%) can be the result of warp scheduling overheads or workload imbalances during the kernel execution. Load imbalances can occur between warps within a block as well as across blocks of the same kernel. See the CUDA Best Practices Guide (https://docs.nvidia.com/cuda/cuda-c-best-practices-guide/index.html#occupancy) for more details on optimizing occupancy.
Operation / Metric Value Unit
aten::to
CPU Time 444604.05 μs
Device Time 28206.85 μs
Self CPU Time 65.51 μs
Self Device Time 0.00 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
aten::_to_copy
CPU Time 444538.54 μs
Device Time 28206.85 μs
Self CPU Time 130.64 μs
Self Device Time 0.00 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
cudaLaunchKernel
CPU Time 1140980.88 μs
Device Time 55705.09 μs
Self CPU Time 1140980.88 μs
Self Device Time 55705.09 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
void optimized_avg_pool2d_kernel<float>(float const*, float*, int, int, int, int, int, int, int, int, int)
CPU Time 0.00 μs
Device Time 761775.55 μs
Self CPU Time 0.00 μs
Self Device Time 761775.55 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
aten::zero_
CPU Time 696114.57 μs
Device Time 570366.63 μs
Self CPU Time 12593.80 μs
Self Device Time 0.00 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
aten::fill_
CPU Time 683522.43 μs
Device Time 570366.63 μs
Self CPU Time 15516.96 μs
Self Device Time 570366.63 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
void at::native::vectorized_elementwise_kernel<4, at::native::FillFunctor<int>, at::detail::Array<char*, 1> >(int, at::native::FillFunctor<int>, at::detail::Array<char*, 1>)
CPU Time 0.00 μs
Device Time 570366.63 μs
Self CPU Time 0.00 μs
Self Device Time 570366.63 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
Status: Completed
45292 warnings generated when compiling for host.
Suppressed 45324 warnings (45277 in non-user code, 47 NOLINT).
Use -header-filter=.* to display errors from all non-system headers. Use -system-headers to display errors from system headers as well.
/home/robert_sakana_ai/llm_cuda/experiments/20250201_optimize_b10_s4_e0_sweep/level_1/task_45/b8_s2_optimized_avg_pool2d/base/base.cu:11:5 bugprone-easily-swappable-parameters
11 | const int N,
| ^~~~~~~~~~~~
12 | const int C,
| ~~~~~~~~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250201_optimize_b10_s4_e0_sweep/level_1/task_45/b8_s2_optimized_avg_pool2d/base/base.cu:11:15: note: the first parameter in the range is 'N'
11 | const int N,
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250201_optimize_b10_s4_e0_sweep/level_1/task_45/b8_s2_optimized_avg_pool2d/base/base.cu:12:15: note: the last parameter in the range is 'C'
12 | const int C,
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250201_optimize_b10_s4_e0_sweep/level_1/task_45/b8_s2_optimized_avg_pool2d/base/base.cu:14:5: warning: 2 adjacent parameters of 'optimized_avg_pool2d_kernel' of similar type ('const int') are easily swapped by mistake [bugprone-easily-swappable-parameters]
14 | const int W,
| ^~~~~~~~~~~~
15 | const int outH,
| ~~~~~~~~~~~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250201_optimize_b10_s4_e0_sweep/level_1/task_45/b8_s2_optimized_avg_pool2d/base/base.cu:14:15: note: the first parameter in the range is 'W'
14 | const int W,
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250201_optimize_b10_s4_e0_sweep/level_1/task_45/b8_s2_optimized_avg_pool2d/base/base.cu:15:15: note: the last parameter in the range is 'outH'
15 | const int outH,
| ^~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250201_optimize_b10_s4_e0_sweep/level_1/task_45/b8_s2_optimized_avg_pool2d/base/base.cu:16:5: warning: 3 adjacent parameters of 'optimized_avg_pool2d_kernel' of similar type ('const int') are easily swapped by mistake [bugprone-easily-swappable-parameters]
16 | const int outW,
| ^~~~~~~~~~~~~~~
17 | const int kernel_size,
| ~~~~~~~~~~~~~~~~~~~~~~
18 | const int stride,
| ~~~~~~~~~~~~~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250201_optimize_b10_s4_e0_sweep/level_1/task_45/b8_s2_optimized_avg_pool2d/base/base.cu:16:15: note: the first parameter in the range is 'outW'
16 | const int outW,
| ^~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250201_optimize_b10_s4_e0_sweep/level_1/task_45/b8_s2_optimized_avg_pool2d/base/base.cu:18:15: note: the last parameter in the range is 'stride'
18 | const int stride,
| ^~~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250201_optimize_b10_s4_e0_sweep/level_1/task_45/b8_s2_optimized_avg_pool2d/base/base.cu:22:23: warning: narrowing conversion from 'unsigned int' to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
22 | const int tid_x = threadIdx.x;
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250201_optimize_b10_s4_e0_sweep/level_1/task_45/b8_s2_optimized_avg_pool2d/base/base.cu:23:23: warning: narrowing conversion from 'unsigned int' to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
23 | const int tid_y = threadIdx.y;
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250201_optimize_b10_s4_e0_sweep/level_1/task_45/b8_s2_optimized_avg_pool2d/base/base.cu:24:23: warning: narrowing conversion from 'unsigned int' to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
24 | const int out_x = blockIdx.x * blockDim.x + tid_x;
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250201_optimize_b10_s4_e0_sweep/level_1/task_45/b8_s2_optimized_avg_pool2d/base/base.cu:25:23: warning: narrowing conversion from 'unsigned int' to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
25 | const int out_y = blockIdx.y * blockDim.y + tid_y;
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250201_optimize_b10_s4_e0_sweep/level_1/task_45/b8_s2_optimized_avg_pool2d/base/base.cu:28:20: warning: narrowing conversion from 'unsigned int' to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
28 | const int nc = blockIdx.z;
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250201_optimize_b10_s4_e0_sweep/level_1/task_45/b8_s2_optimized_avg_pool2d/base/base.cu:83:19: warning: narrowing conversion from 'int64_t' (aka 'long') to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
83 | const int N = x.size(0);
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250201_optimize_b10_s4_e0_sweep/level_1/task_45/b8_s2_optimized_avg_pool2d/base/base.cu:84:19: warning: narrowing conversion from 'int64_t' (aka 'long') to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
84 | const int C = x.size(1);
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250201_optimize_b10_s4_e0_sweep/level_1/task_45/b8_s2_optimized_avg_pool2d/base/base.cu:85:19: warning: narrowing conversion from 'int64_t' (aka 'long') to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
85 | const int H = x.size(2);
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250201_optimize_b10_s4_e0_sweep/level_1/task_45/b8_s2_optimized_avg_pool2d/base/base.cu:86:19: warning: narrowing conversion from 'int64_t' (aka 'long') to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
86 | const int W = x.size(3);
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250201_optimize_b10_s4_e0_sweep/level_1/task_45/b8_s2_optimized_avg_pool2d/base/base.cu:104:5: warning: inside a lambda, '__func__' expands to the name of the function call operator; consider capturing the name of the enclosing function explicitly [bugprone-lambda-function-name]
104 | AT_DISPATCH_FLOATING_TYPES(x.scalar_type(), "optimized_avg_pool2d_kernel", ([&] {
| ^
/home/robert_sakana_ai/miniconda3/envs/llm2cuda/lib/python3.11/site-packages/torch/include/ATen/Dispatch.h:237:34: note: expanded from macro 'AT_DISPATCH_FLOATING_TYPES'
237 | AT_DISPATCH_SWITCH(TYPE, NAME, AT_DISPATCH_CASE_FLOATING_TYPES(__VA_ARGS__))
| ^
/home/robert_sakana_ai/miniconda3/envs/llm2cuda/lib/python3.11/site-packages/torch/include/ATen/Dispatch.h:233:3: note: expanded from macro 'AT_DISPATCH_CASE_FLOATING_TYPES'
233 | AT_DISPATCH_CASE(at::ScalarType::Double, __VA_ARGS__) \
| ^
/home/robert_sakana_ai/miniconda3/envs/llm2cuda/lib/python3.11/site-packages/torch/include/ATen/Dispatch.h:74:3: note: expanded from macro 'AT_DISPATCH_CASE'
74 | AT_PRIVATE_CASE_TYPE_USING_HINT(enum_type, scalar_t, __VA_ARGS__)
| ^
note: (skipping 1 expansions in backtrace; use -fmacro-backtrace-limit=0 to see all)
/home/robert_sakana_ai/miniconda3/envs/llm2cuda/lib/python3.11/site-packages/torch/include/ATen/Dispatch.h:58:7: note: expanded from macro 'AT_PRIVATE_CHECK_SELECTIVE_BUILD'
58 | AT_ERROR( \
| ^
/home/robert_sakana_ai/miniconda3/envs/llm2cuda/lib/python3.11/site-packages/torch/include/c10/util/Exception.h:711:32: note: expanded from macro 'AT_ERROR'
711 | C10_EXPAND_MSVC_WORKAROUND(TORCH_CHECK(false, ::c10::str(__VA_ARGS__))); \
| ^
/home/robert_sakana_ai/miniconda3/envs/llm2cuda/lib/python3.11/site-packages/torch/include/c10/util/Exception.h:536:9: note: expanded from macro 'TORCH_CHECK'
536 | __func__, \
| ^