← Back to Leaderboard

The AI CUDA Engineer 👷

63_conv_standard_2D__square_input__square_kernelconv2d_shared_mem_optimized_base

Level 1 • Task 63
import torch
import torch.nn as nn
import torch.nn.functional as F


def module_fn(
    x: torch.Tensor,
    weight: torch.Tensor,
    bias: torch.Tensor,
    stride: int,
    padding: int,
    dilation: int,
    groups: int,
) -> torch.Tensor:
    """
    Performs a standard 2D convolution operation with a square input and square kernel.

    Args:
        x (torch.Tensor): Input tensor.
        weight (torch.Tensor): Weight tensor.
        bias (torch.Tensor): Bias tensor.
        stride (int): Stride of the convolution.
        padding (int): Padding applied to the input.
        dilation (int): Dilation of the convolution.
        groups (int): Number of blocked connections from input channels to output channels.

    Returns:
        torch.Tensor: Output tensor.
    """
    return F.conv2d(
        x,
        weight,
        bias,
        stride=stride,
        padding=padding,
        dilation=dilation,
        groups=groups,
    )


class Model(nn.Module):
    """
    Performs a standard 2D convolution operation with a square input and square kernel.

    Args:
        in_channels (int): Number of channels in the input tensor.
        out_channels (int): Number of channels produced by the convolution.
        kernel_size (int): Size of the square convolution kernel.
        stride (int): Stride of the convolution.
        padding (int): Padding applied to the input.
        dilation (int): Spacing between kernel elements.
        groups (int): Number of blocked connections from input channels to output channels.
        bias (bool): If `True`, adds a learnable bias to the output.
    """

    def __init__(
        self,
        in_channels: int,
        out_channels: int,
        kernel_size: int,
        stride: int,
        padding: int,
        dilation: int,
        groups: int,
        bias: bool,
    ):
        super(Model, self).__init__()
        # Create a Conv2d layer to get the same initialization
        conv = nn.Conv2d(
            in_channels,
            out_channels,
            kernel_size=kernel_size,
            stride=stride,
            padding=padding,
            dilation=dilation,
            groups=groups,
            bias=bias,
        )
        # Copy the initialized parameters
        self.weight = nn.Parameter(conv.weight.clone())
        self.bias = nn.Parameter(conv.bias.clone()) if bias else None

        self.stride = stride
        self.padding = padding
        self.dilation = dilation
        self.groups = groups

    def forward(
        self,
        x: torch.Tensor,
        fn=module_fn,
    ) -> torch.Tensor:
        """
        Performs the 2D convolution.

        Args:
            x (torch.Tensor): Input tensor of shape (batch_size, in_channels, height, width).

        Returns:
            torch.Tensor: Output tensor of shape (batch_size, out_channels, height_out, width_out).
        """
        return fn(
            x,
            self.weight,
            self.bias,
            self.stride,
            self.padding,
            self.dilation,
            self.groups,
        )


# Constants
batch_size = 16
in_channels = 3
out_channels = 64
kernel_size = 3
width = 256
height = 256
stride = 1
padding = 0
dilation = 1
groups = 1
bias = False


def get_inputs():
    x = torch.randn(batch_size, in_channels, height, width)
    return [x]


def get_init_inputs():
    return [
        in_channels,
        out_channels,
        kernel_size,
        stride,
        padding,
        dilation,
        groups,
        bias,
    ]
import torch
import torch.nn as nn


class Model(nn.Module):
    """
    Performs a standard 2D convolution operation with a square input and square kernel.

    Args:
        in_channels (int): Number of channels in the input tensor.
        out_channels (int): Number of channels produced by the convolution.
        kernel_size (int): Size of the square convolution kernel.
        stride (int, optional): Stride of the convolution. Defaults to 1.
        padding (int, optional): Padding applied to the input. Defaults to 0.
        dilation (int, optional): Spacing between kernel elements. Defaults to 1.
        groups (int, optional): Number of blocked connections from input channels to output channels. Defaults to 1.
        bias (bool, optional): If `True`, adds a learnable bias to the output. Defaults to `False`.
    """

    def __init__(
        self,
        in_channels: int,
        out_channels: int,
        kernel_size: int,
        stride: int = 1,
        padding: int = 0,
        dilation: int = 1,
        groups: int = 1,
        bias: bool = False,
    ):
        super(Model, self).__init__()
        self.conv2d = nn.Conv2d(
            in_channels,
            out_channels,
            (kernel_size, kernel_size),
            stride=stride,
            padding=padding,
            dilation=dilation,
            groups=groups,
            bias=bias,
        )

    def forward(self, x: torch.Tensor) -> torch.Tensor:
        """
        Performs the 2D convolution.

        Args:
            x (torch.Tensor): Input tensor of shape (batch_size, in_channels, height, width).

        Returns:
            torch.Tensor: Output tensor of shape (batch_size, out_channels, height_out, width_out).
        """
        return self.conv2d(x)


# Test code
batch_size = 16
in_channels = 3
out_channels = 64
kernel_size = 3
width = 256
height = 256
stride = 1
padding = 0
dilation = 1
groups = 1
bias = False


def get_inputs():
    x = torch.randn(batch_size, in_channels, height, width)
    return [x]


def get_init_inputs():
    return [
        in_channels,
        out_channels,
        kernel_size,
        stride,
        padding,
        dilation,
        groups,
        bias,
    ]  # Provide in_channels, out_channels, kernel_size for initialization

Kernel Information

Related Kernels (Level 1, Task 63 • 63_conv_standard_2D__square_input__square_kernel)

Rank Kernel Name Runtime (ms) Speedup Native Speedup Compile
🥇 63_conv_standard_2D__square_input__square_kernel 0.23 1.00 1.68
🥇 adaptive_conv2d_cuda_base 0.23 1.00 1.68
🥇 conv2d_minimized_warp_divergence_base 0.23 1.00 1.68
🥇 adaptive_conv2d_cuda_base 0.23 1.00 1.68
5 conv2d_shared_mem_optimized_base 0.43 0.54 0.90
6 conv2d_coalesced_coalescing_base 0.85 0.27 0.45
7 conv2d_shared_mem_optimized_base 1.10 0.21 0.35
8 conv2d_shared_mem_optimized_base 1.10 0.21 0.35
8 conv2d_shared_mem_opt_base_base 1.10 0.21 0.35
10 63_conv_warp_optimized_base 1.18 0.19 0.33
11 mod_conv2d_kernel_modular_base 1.20 0.19 0.32
12 conv2d_unrolled_shared_base 1.22 0.19 0.32
13 63_conv_optimized_thread_mapping_base 1.34 0.17 0.29
14 constant_memory_optim_conv2d_edit_1 1.35 0.17 0.28
15 conv2d_shared_atomic_minimized_base 1.39 0.17 0.28
16 conv2d_grid_stride_base 1.41 0.16 0.27
17 atomic_minimized_conv2d_base_base 1.42 0.16 0.27
18 balanced_conv2d_cuda_base 1.44 0.16 0.27
19 block_size_optimization_conv2d_base 1.45 0.16 0.27
20 block_size_optimization_conv2d_edit_1 1.47 0.16 0.26
#include <torch/extension.h>
#include <cuda.h>
#include <cuda_runtime.h>

#define BLOCK_SIZE 16
#define KERNEL_SIZE 3
#define FEATURES_PER_BLOCK 4
#define TILE_SIZE (BLOCK_SIZE + KERNEL_SIZE - 1)

__global__ void conv2d_kernel(
    const float* __restrict__ input,
    const float* __restrict__ weight,
    float* __restrict__ output,
    const int batch_size,
    const int in_channels,
    const int out_channels,
    const int input_height,
    const int input_width,
    const int output_height,
    const int output_width,
    const int stride,
    const int padding) {
    
    __shared__ float shared_input[TILE_SIZE][TILE_SIZE];
    __shared__ float shared_weights[FEATURES_PER_BLOCK][KERNEL_SIZE][KERNEL_SIZE];
    
    const int tx = threadIdx.x;
    const int ty = threadIdx.y;
    const int bx = blockIdx.x * BLOCK_SIZE;
    const int by = blockIdx.y * BLOCK_SIZE;
    const int b = blockIdx.z;
    
    const int x_out = bx + tx;
    const int y_out = by + ty;
    
    float partial_sums[FEATURES_PER_BLOCK] = {0.0f};
    
    for (int ocb = 0; ocb < out_channels; ocb += FEATURES_PER_BLOCK) {
        for (int ic = 0; ic < in_channels; ++ic) {
            if (tx < KERNEL_SIZE && ty < KERNEL_SIZE) {
                for (int f = 0; f < FEATURES_PER_BLOCK && (ocb + f) < out_channels; ++f) {
                    shared_weights[f][ty][tx] = weight[((ocb + f) * in_channels + ic) * KERNEL_SIZE * KERNEL_SIZE + ty * KERNEL_SIZE + tx];
                }
            }
            
            for (int i = ty; i < TILE_SIZE; i += BLOCK_SIZE) {
                for (int j = tx; j < TILE_SIZE; j += BLOCK_SIZE) {
                    int ih = by + i - padding;
                    int iw = bx + j - padding;
                    if (ih >= 0 && ih < input_height && iw >= 0 && iw < input_width) {
                        shared_input[i][j] = input[((b * in_channels + ic) * input_height + ih) * input_width + iw];
                    } else {
                        shared_input[i][j] = 0.0f;
                    }
                }
            }
            __syncthreads();
            
            if (x_out < output_width && y_out < output_height) {
                for (int f = 0; f < FEATURES_PER_BLOCK && (ocb + f) < out_channels; ++f) {
                    float sum = 0.0f;
                    #pragma unroll
                    for (int ky = 0; ky < KERNEL_SIZE; ++ky) {
                        #pragma unroll
                        for (int kx = 0; kx < KERNEL_SIZE; ++kx) {
                            sum += shared_input[ty * stride + ky][tx * stride + kx] * 
                                   shared_weights[f][ky][kx];
                        }
                    }
                    partial_sums[f] += sum;
                }
            }
            __syncthreads();
        }
        
        if (x_out < output_width && y_out < output_height) {
            for (int f = 0; f < FEATURES_PER_BLOCK && (ocb + f) < out_channels; ++f) {
                output[((b * out_channels + (ocb + f)) * output_height + y_out) * output_width + x_out] = 
                    partial_sums[f];
                partial_sums[f] = 0.0f;
            }
        }
    }
}

torch::Tensor forward(
    torch::Tensor x,
    torch::Tensor weight,
    torch::optional<torch::Tensor> bias,
    int stride,
    int padding,
    int dilation,
    int groups) {
    
    TORCH_CHECK(x.is_cuda(), "Input must be a CUDA tensor");
    TORCH_CHECK(weight.is_cuda(), "Weight must be a CUDA tensor");
    TORCH_CHECK(x.is_contiguous(), "Input must be contiguous");
    TORCH_CHECK(weight.is_contiguous(), "Weight must be contiguous");
    
    auto batch_size = x.size(0);
    auto in_channels = x.size(1);
    auto input_height = x.size(2);
    auto input_width = x.size(3);
    auto out_channels = weight.size(0);
    
    auto output_height = (input_height + 2 * padding - KERNEL_SIZE) / stride + 1;
    auto output_width = (input_width + 2 * padding - KERNEL_SIZE) / stride + 1;
    
    auto output = torch::empty({batch_size, out_channels, output_height, output_width},
                             x.options());
    
    dim3 threads(BLOCK_SIZE, BLOCK_SIZE);
    dim3 blocks((output_width + BLOCK_SIZE - 1) / BLOCK_SIZE,
                (output_height + BLOCK_SIZE - 1) / BLOCK_SIZE,
                batch_size);
    
    conv2d_kernel<<<blocks, threads>>>(
        x.data_ptr<float>(),
        weight.data_ptr<float>(),
        output.data_ptr<float>(),
        batch_size,
        in_channels,
        out_channels,
        input_height,
        input_width,
        output_height,
        output_width,
        stride,
        padding);
    
    if (bias.has_value()) {
        output.add_(bias.value().view({1, -1, 1, 1}));
    }
    
    return output;
}

PYBIND11_MODULE(TORCH_EXTENSION_NAME, m) {
    m.def("forward", &forward, "Shared memory optimized CUDA conv2d implementation");
}
Performance Metrics
Metric Value Unit Variance Samples
Executed Ipc Active 2.750 inst/cycle 0.000 5
Executed Ipc Elapsed 2.666 inst/cycle 0.000 5
Issue Slots Busy 68.754 % 0.001 5
Issued Ipc Active 2.750 inst/cycle 0.000 5
SM Busy 68.754 % 0.001 5
Memory Throughput 504378107388.478 byte/second 893109096258582784.000 5
Mem Busy 69.540 % 0.013 5
Max Bandwidth 43.194 % 0.005 5
L1/TEX Hit Rate 46.942 % 0.000 5
L2 Hit Rate 94.436 % 0.009 5
Mem Pipes Busy 36.810 % 0.004 5
Warp Cycles Per Issued Instruction 16.408 cycle 0.000 5
Warp Cycles Per Executed Instruction 16.416 cycle 0.000 5
Avg. Active Threads Per Warp 27.890 0.000 5
Avg. Not Predicated Off Threads Per Warp 26.120 0.000 5
Max Active Clusters 0.000 cluster 0.000 5
Max Cluster Size 8.000 block 0.000 5
Overall GPU Occupancy 0.000 % 0.000 5
Cluster Occupancy 0.000 % 0.000 5
Block Limit SM 32.000 block 0.000 5
Block Limit Registers 6.000 block 0.000 5
Block Limit Shared Mem 12.000 block 0.000 5
Block Limit Warps 8.000 block 0.000 5
Theoretical Active Warps per SM 48.000 warp 0.000 5
Theoretical Occupancy 75.000 % 0.000 5
Achieved Occupancy 70.502 % 0.001 5
Achieved Active Warps Per SM 45.124 warp 0.000 5
Analysis Rules
Rule Description
INF HighPipeUtilization ALU is the highest-utilized pipeline (35.5%) based on active cycles, taking into account the rates of its different instructions. It executes integer and logic operations. It is well-utilized, but should not be a bottleneck.
INF CPIStall Check the Warp Stall Sampling (All Cycles) table for the top stall locations in your source based on sampling data. The Kernel Profiling Guide (https://docs.nvidia.com/nsight-compute/ProfilingGuide/index.html#metrics-reference) provides more details on each stall reason.
WRN Occupancy This kernel's theoretical occupancy (75.0%) is limited by the number of required registers. See the CUDA Best Practices Guide (https://docs.nvidia.com/cuda/cuda-c-best-practices-guide/index.html#occupancy) for more details on optimizing occupancy.
Operation / Metric Value Unit
aten::to
CPU Time 269266.48 μs
Device Time 1209.91 μs
Self CPU Time 59.58 μs
Self Device Time 0.00 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
aten::_to_copy
CPU Time 269206.90 μs
Device Time 1209.91 μs
Self CPU Time 112.70 μs
Self Device Time 0.00 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
cudaLaunchKernel
CPU Time 2440591.14 μs
Device Time 13897.36 μs
Self CPU Time 2440591.14 μs
Self Device Time 13897.36 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
conv2d_kernel(float const*, float const*, float*, int, int, int, int, int, int, int, int, int)
CPU Time 0.00 μs
Device Time 2271671.76 μs
Self CPU Time 0.00 μs
Self Device Time 2271671.76 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
cudaEventRecord
CPU Time 11944.48 μs
Device Time 27722.99 μs
Self CPU Time 11944.48 μs
Self Device Time 27722.99 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
aten::zero_
CPU Time 2131871.28 μs
Device Time 418007.64 μs
Self CPU Time 11683.71 μs
Self Device Time 0.00 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
aten::fill_
CPU Time 2120192.09 μs
Device Time 418007.64 μs
Self CPU Time 12924.37 μs
Self Device Time 418007.64 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
void at::native::vectorized_elementwise_kernel<4, at::native::FillFunctor<int>, at::detail::Array<char*, 1> >(int, at::native::FillFunctor<int>, at::detail::Array<char*, 1>)
CPU Time 0.00 μs
Device Time 418007.64 μs
Self CPU Time 0.00 μs
Self Device Time 418007.64 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
Status: Completed
45301 warnings generated when compiling for host.
Suppressed 45327 warnings (45280 in non-user code, 47 NOLINT).
Use -header-filter=.* to display errors from all non-system headers. Use -system-headers to display errors from system headers as well.
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_1/task_63/b10_s2_conv2d_shared_mem_optimized/base/base.cu:11:5 bugprone-easily-swappable-parameters
11 | const float* __restrict__ input,
| ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
12 | const float* __restrict__ weight,
| ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_1/task_63/b10_s2_conv2d_shared_mem_optimized/base/base.cu:11:31: note: the first parameter in the range is 'input'
11 | const float* __restrict__ input,
| ^~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_1/task_63/b10_s2_conv2d_shared_mem_optimized/base/base.cu:12:31: note: the last parameter in the range is 'weight'
12 | const float* __restrict__ weight,
| ^~~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_1/task_63/b10_s2_conv2d_shared_mem_optimized/base/base.cu:14:5: warning: 3 adjacent parameters of 'conv2d_kernel' of similar type ('const int') are easily swapped by mistake [bugprone-easily-swappable-parameters]
14 | const int batch_size,
| ^~~~~~~~~~~~~~~~~~~~~
15 | const int in_channels,
| ~~~~~~~~~~~~~~~~~~~~~~
16 | const int out_channels,
| ~~~~~~~~~~~~~~~~~~~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_1/task_63/b10_s2_conv2d_shared_mem_optimized/base/base.cu:14:15: note: the first parameter in the range is 'batch_size'
14 | const int batch_size,
| ^~~~~~~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_1/task_63/b10_s2_conv2d_shared_mem_optimized/base/base.cu:16:15: note: the last parameter in the range is 'out_channels'
16 | const int out_channels,
| ^~~~~~~~~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_1/task_63/b10_s2_conv2d_shared_mem_optimized/base/base.cu:18:5: warning: 2 adjacent parameters of 'conv2d_kernel' of similar type ('const int') are easily swapped by mistake [bugprone-easily-swappable-parameters]
18 | const int input_width,
| ^~~~~~~~~~~~~~~~~~~~~~
19 | const int output_height,
| ~~~~~~~~~~~~~~~~~~~~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_1/task_63/b10_s2_conv2d_shared_mem_optimized/base/base.cu:18:15: note: the first parameter in the range is 'input_width'
18 | const int input_width,
| ^~~~~~~~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_1/task_63/b10_s2_conv2d_shared_mem_optimized/base/base.cu:19:15: note: the last parameter in the range is 'output_height'
19 | const int output_height,
| ^~~~~~~~~~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_1/task_63/b10_s2_conv2d_shared_mem_optimized/base/base.cu:20:5: warning: 3 adjacent parameters of 'conv2d_kernel' of similar type ('const int') are easily swapped by mistake [bugprone-easily-swappable-parameters]
20 | const int output_width,
| ^~~~~~~~~~~~~~~~~~~~~~~
21 | const int stride,
| ~~~~~~~~~~~~~~~~~
22 | const int padding) {
| ~~~~~~~~~~~~~~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_1/task_63/b10_s2_conv2d_shared_mem_optimized/base/base.cu:20:15: note: the first parameter in the range is 'output_width'
20 | const int output_width,
| ^~~~~~~~~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_1/task_63/b10_s2_conv2d_shared_mem_optimized/base/base.cu:22:15: note: the last parameter in the range is 'padding'
22 | const int padding) {
| ^~~~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_1/task_63/b10_s2_conv2d_shared_mem_optimized/base/base.cu:27:20: warning: narrowing conversion from 'unsigned int' to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
27 | const int tx = threadIdx.x;
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_1/task_63/b10_s2_conv2d_shared_mem_optimized/base/base.cu:28:20: warning: narrowing conversion from 'unsigned int' to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
28 | const int ty = threadIdx.y;
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_1/task_63/b10_s2_conv2d_shared_mem_optimized/base/base.cu:29:20: warning: narrowing conversion from 'unsigned int' to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
29 | const int bx = blockIdx.x * BLOCK_SIZE;
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_1/task_63/b10_s2_conv2d_shared_mem_optimized/base/base.cu:30:20: warning: narrowing conversion from 'unsigned int' to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
30 | const int by = blockIdx.y * BLOCK_SIZE;
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_1/task_63/b10_s2_conv2d_shared_mem_optimized/base/base.cu:31:19: warning: narrowing conversion from 'unsigned int' to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
31 | const int b = blockIdx.z;
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_1/task_63/b10_s2_conv2d_shared_mem_optimized/base/base.cu:87:19: warning: the parameter 'x' is copied for each invocation but only used as a const reference; consider making it a const reference [performance-unnecessary-value-param]
87 | torch::Tensor x,
| ^
| const &
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_1/task_63/b10_s2_conv2d_shared_mem_optimized/base/base.cu:88:19: warning: the parameter 'weight' is copied for each invocation but only used as a const reference; consider making it a const reference [performance-unnecessary-value-param]
88 | torch::Tensor weight,
| ^
| const &
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_1/task_63/b10_s2_conv2d_shared_mem_optimized/base/base.cu:91:5: warning: 3 adjacent parameters of 'forward' of similar type ('int') are easily swapped by mistake [bugprone-easily-swappable-parameters]
91 | int padding,
| ^~~~~~~~~~~~
92 | int dilation,
| ~~~~~~~~~~~~~
93 | int groups) {
| ~~~~~~~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_1/task_63/b10_s2_conv2d_shared_mem_optimized/base/base.cu:91:9: note: the first parameter in the range is 'padding'
91 | int padding,
| ^~~~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_1/task_63/b10_s2_conv2d_shared_mem_optimized/base/base.cu:93:9: note: the last parameter in the range is 'groups'
93 | int groups) {
| ^~~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_1/task_63/b10_s2_conv2d_shared_mem_optimized/base/base.cu:106:42: warning: performing an implicit widening conversion to type 'int64_t' (aka 'long') of a multiplication performed in type 'int' [bugprone-implicit-widening-of-multiplication-result]
106 | auto output_height = (input_height + 2 * padding - KERNEL_SIZE) / stride + 1;
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_1/task_63/b10_s2_conv2d_shared_mem_optimized/base/base.cu:106:42: note: make conversion explicit to silence this warning
4 | auto output_height = (input_height + 2 * padding - KERNEL_SIZE) / stride + 1;
| ^~~~~~~~~~~
| static_cast<int64_t>( )
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_1/task_63/b10_s2_conv2d_shared_mem_optimized/base/base.cu:106:42: note: perform multiplication in a wider type
106 | auto output_height = (input_height + 2 * padding - KERNEL_SIZE) / stride + 1;
| ^
| static_cast<int64_t>( )
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_1/task_63/b10_s2_conv2d_shared_mem_optimized/base/base.cu:107:40: warning: performing an implicit widening conversion to type 'int64_t' (aka 'long') of a multiplication performed in type 'int' [bugprone-implicit-widening-of-multiplication-result]
107 | auto output_width = (input_width + 2 * padding - KERNEL_SIZE) / stride + 1;
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_1/task_63/b10_s2_conv2d_shared_mem_optimized/base/base.cu:107:40: note: make conversion explicit to silence this warning
107 | auto output_width = (input_width + 2 * padding - KERNEL_SIZE) / stride + 1;
| ^~~~~~~~~~~
| static_cast<int64_t>( )
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_1/task_63/b10_s2_conv2d_shared_mem_optimized/base/base.cu:107:40: note: perform multiplication in a wider type
107 | auto output_width = (input_width + 2 * padding - KERNEL_SIZE) / stride + 1;
| ^
| static_cast<int64_t>( )
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_1/task_63/b10_s2_conv2d_shared_mem_optimized/base/base.cu:121:9: warning: narrowing conversion from 'int64_t' (aka 'long') to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
121 | batch_size,
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_1/task_63/b10_s2_conv2d_shared_mem_optimized/base/base.cu:122:9: warning: narrowing conversion from 'int64_t' (aka 'long') to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
122 | in_channels,
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_1/task_63/b10_s2_conv2d_shared_mem_optimized/base/base.cu:123:9: warning: narrowing conversion from 'int64_t' (aka 'long') to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
123 | out_channels,
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_1/task_63/b10_s2_conv2d_shared_mem_optimized/base/base.cu:124:9: warning: narrowing conversion from 'int64_t' (aka 'long') to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
124 | input_height,
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_1/task_63/b10_s2_conv2d_shared_mem_optimized/base/base.cu:125:9: warning: narrowing conversion from 'int64_t' (aka 'long') to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
125 | input_width,
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_1/task_63/b10_s2_conv2d_shared_mem_optimized/base/base.cu:126:9: warning: narrowing conversion from 'int64_t' (aka 'long') to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
126 | output_height,
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_1/task_63/b10_s2_conv2d_shared_mem_optimized/base/base.cu:127:9: warning: narrowing conversion from 'int64_t' (aka 'long') to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
127 | output_width,
| ^