← Back to Leaderboard

The AI CUDA Engineer 👷

63_conv_standard_2D__square_input__square_kernelconv2d_shared_atomic_minimized_base

Level 1 • Task 63
import torch
import torch.nn as nn
import torch.nn.functional as F


def module_fn(
    x: torch.Tensor,
    weight: torch.Tensor,
    bias: torch.Tensor,
    stride: int,
    padding: int,
    dilation: int,
    groups: int,
) -> torch.Tensor:
    """
    Performs a standard 2D convolution operation with a square input and square kernel.

    Args:
        x (torch.Tensor): Input tensor.
        weight (torch.Tensor): Weight tensor.
        bias (torch.Tensor): Bias tensor.
        stride (int): Stride of the convolution.
        padding (int): Padding applied to the input.
        dilation (int): Dilation of the convolution.
        groups (int): Number of blocked connections from input channels to output channels.

    Returns:
        torch.Tensor: Output tensor.
    """
    return F.conv2d(
        x,
        weight,
        bias,
        stride=stride,
        padding=padding,
        dilation=dilation,
        groups=groups,
    )


class Model(nn.Module):
    """
    Performs a standard 2D convolution operation with a square input and square kernel.

    Args:
        in_channels (int): Number of channels in the input tensor.
        out_channels (int): Number of channels produced by the convolution.
        kernel_size (int): Size of the square convolution kernel.
        stride (int): Stride of the convolution.
        padding (int): Padding applied to the input.
        dilation (int): Spacing between kernel elements.
        groups (int): Number of blocked connections from input channels to output channels.
        bias (bool): If `True`, adds a learnable bias to the output.
    """

    def __init__(
        self,
        in_channels: int,
        out_channels: int,
        kernel_size: int,
        stride: int,
        padding: int,
        dilation: int,
        groups: int,
        bias: bool,
    ):
        super(Model, self).__init__()
        # Create a Conv2d layer to get the same initialization
        conv = nn.Conv2d(
            in_channels,
            out_channels,
            kernel_size=kernel_size,
            stride=stride,
            padding=padding,
            dilation=dilation,
            groups=groups,
            bias=bias,
        )
        # Copy the initialized parameters
        self.weight = nn.Parameter(conv.weight.clone())
        self.bias = nn.Parameter(conv.bias.clone()) if bias else None

        self.stride = stride
        self.padding = padding
        self.dilation = dilation
        self.groups = groups

    def forward(
        self,
        x: torch.Tensor,
        fn=module_fn,
    ) -> torch.Tensor:
        """
        Performs the 2D convolution.

        Args:
            x (torch.Tensor): Input tensor of shape (batch_size, in_channels, height, width).

        Returns:
            torch.Tensor: Output tensor of shape (batch_size, out_channels, height_out, width_out).
        """
        return fn(
            x,
            self.weight,
            self.bias,
            self.stride,
            self.padding,
            self.dilation,
            self.groups,
        )


# Constants
batch_size = 16
in_channels = 3
out_channels = 64
kernel_size = 3
width = 256
height = 256
stride = 1
padding = 0
dilation = 1
groups = 1
bias = False


def get_inputs():
    x = torch.randn(batch_size, in_channels, height, width)
    return [x]


def get_init_inputs():
    return [
        in_channels,
        out_channels,
        kernel_size,
        stride,
        padding,
        dilation,
        groups,
        bias,
    ]
import torch
import torch.nn as nn


class Model(nn.Module):
    """
    Performs a standard 2D convolution operation with a square input and square kernel.

    Args:
        in_channels (int): Number of channels in the input tensor.
        out_channels (int): Number of channels produced by the convolution.
        kernel_size (int): Size of the square convolution kernel.
        stride (int, optional): Stride of the convolution. Defaults to 1.
        padding (int, optional): Padding applied to the input. Defaults to 0.
        dilation (int, optional): Spacing between kernel elements. Defaults to 1.
        groups (int, optional): Number of blocked connections from input channels to output channels. Defaults to 1.
        bias (bool, optional): If `True`, adds a learnable bias to the output. Defaults to `False`.
    """

    def __init__(
        self,
        in_channels: int,
        out_channels: int,
        kernel_size: int,
        stride: int = 1,
        padding: int = 0,
        dilation: int = 1,
        groups: int = 1,
        bias: bool = False,
    ):
        super(Model, self).__init__()
        self.conv2d = nn.Conv2d(
            in_channels,
            out_channels,
            (kernel_size, kernel_size),
            stride=stride,
            padding=padding,
            dilation=dilation,
            groups=groups,
            bias=bias,
        )

    def forward(self, x: torch.Tensor) -> torch.Tensor:
        """
        Performs the 2D convolution.

        Args:
            x (torch.Tensor): Input tensor of shape (batch_size, in_channels, height, width).

        Returns:
            torch.Tensor: Output tensor of shape (batch_size, out_channels, height_out, width_out).
        """
        return self.conv2d(x)


# Test code
batch_size = 16
in_channels = 3
out_channels = 64
kernel_size = 3
width = 256
height = 256
stride = 1
padding = 0
dilation = 1
groups = 1
bias = False


def get_inputs():
    x = torch.randn(batch_size, in_channels, height, width)
    return [x]


def get_init_inputs():
    return [
        in_channels,
        out_channels,
        kernel_size,
        stride,
        padding,
        dilation,
        groups,
        bias,
    ]  # Provide in_channels, out_channels, kernel_size for initialization

Kernel Information

Related Kernels (Level 1, Task 63 • 63_conv_standard_2D__square_input__square_kernel)

Rank Kernel Name Runtime (ms) Speedup Native Speedup Compile
🥇 63_conv_standard_2D__square_input__square_kernel 0.23 1.00 1.68
🥇 adaptive_conv2d_cuda_base 0.23 1.00 1.68
🥇 conv2d_minimized_warp_divergence_base 0.23 1.00 1.68
🥇 adaptive_conv2d_cuda_base 0.23 1.00 1.68
5 conv2d_shared_mem_optimized_base 0.43 0.54 0.90
6 conv2d_coalesced_coalescing_base 0.85 0.27 0.45
7 conv2d_shared_mem_optimized_base 1.10 0.21 0.35
8 conv2d_shared_mem_optimized_base 1.10 0.21 0.35
8 conv2d_shared_mem_opt_base_base 1.10 0.21 0.35
10 63_conv_warp_optimized_base 1.18 0.19 0.33
11 mod_conv2d_kernel_modular_base 1.20 0.19 0.32
12 conv2d_unrolled_shared_base 1.22 0.19 0.32
13 63_conv_optimized_thread_mapping_base 1.34 0.17 0.29
14 constant_memory_optim_conv2d_edit_1 1.35 0.17 0.28
15 conv2d_shared_atomic_minimized_base 1.39 0.17 0.28
16 conv2d_grid_stride_base 1.41 0.16 0.27
17 atomic_minimized_conv2d_base_base 1.42 0.16 0.27
18 balanced_conv2d_cuda_base 1.44 0.16 0.27
19 block_size_optimization_conv2d_base 1.45 0.16 0.27
20 block_size_optimization_conv2d_edit_1 1.47 0.16 0.26
#include <torch/extension.h>
#include <cuda.h>
#include <cuda_runtime.h>

#define CHECK_CUDA(x) TORCH_CHECK(x.is_cuda(), #x " must be a CUDA tensor")
#define CHECK_CONTIGUOUS(x) TORCH_CHECK(x.is_contiguous(), #x " must be contiguous")
#define CHECK_INPUT(x) CHECK_CUDA(x); CHECK_CONTIGUOUS(x)

// This kernel uses shared memory to load the weights for a given output channel once per block.
// Each block is mapped to a tile of output pixels for a specific (batch, out_channel) pair.
// Each thread computes one output element by iterating over all input channels and the kernel window.
// Since each thread writes to a unique output element, no atomic operations on global memory are used.
// Atomic operations would only be used if multiple threads needed to update the same global variable, but here that race is avoided.

__global__ void conv2d_shared_kernel(
    const float* __restrict__ input,
    const float* __restrict__ weight,
    float* __restrict__ output,
    int N,
    int Cin,
    int H,
    int W,
    int Cout,
    int K,
    int outH,
    int outW,
    int stride,
    int padding) {

    // Decode blockIdx.z into batch index and output channel
    int b_oc = blockIdx.z; // ranges over N * Cout
    int n = b_oc / Cout;
    int oc = b_oc % Cout;

    // Compute output tile offsets
    int ox0 = blockIdx.x * blockDim.x;
    int oy0 = blockIdx.y * blockDim.y;
    int tx = threadIdx.x;
    int ty = threadIdx.y;
    int ox = ox0 + tx;
    int oy = oy0 + ty;

    // Allocate shared memory for the weight for this output channel
    // Size: Cin * K * K
    extern __shared__ float shared_weight[];
    int total_weight = Cin * K * K;
    int tid = ty * blockDim.x + tx;
    for (int i = tid; i < total_weight; i += blockDim.x * blockDim.y) {
        shared_weight[i] = weight[((oc * Cin) * K * K) + i];
    }
    __syncthreads();

    float sum = 0.0f;
    if (ox < outW && oy < outH) {
        // Loop over all input channels and kernel elements
        for (int c = 0; c < Cin; ++c) {
            for (int kh = 0; kh < K; ++kh) {
                for (int kw = 0; kw < K; ++kw) {
                    int in_y = oy * stride - padding + kh;
                    int in_x = ox * stride - padding + kw;
                    if (in_y >= 0 && in_y < H && in_x >= 0 && in_x < W) {
                        int input_idx = ((n * Cin + c) * H + in_y) * W + in_x;
                        int w_idx = (c * K + kh) * K + kw;
                        sum += input[input_idx] * shared_weight[w_idx];
                    }
                }
            }
        }
    }

    if (ox < outW && oy < outH) {
        int output_idx = ((n * Cout + oc) * outH + oy) * outW + ox;
        output[output_idx] = sum;
    }
}


// Host function forwarding the convolution operation
// Assumes square input and square kernel. Dilation is not used in this kernel.

torch::Tensor forward(
    torch::Tensor x,
    torch::Tensor weight,
    torch::optional<torch::Tensor> bias,
    int stride,
    int padding,
    int dilation, // dilation is not applied in this kernel
    int groups) {

    CHECK_INPUT(x);
    CHECK_INPUT(weight);
    if (bias.has_value()) {
        CHECK_INPUT(bias.value());
    }
    TORCH_CHECK(groups == 1, "groups != 1 is not supported by this kernel");

    int N = x.size(0);
    int Cin = x.size(1);
    int H = x.size(2);
    int W = x.size(3);
    int Cout = weight.size(0);
    int K = weight.size(2); // assuming square kernel (K x K)

    int outH = (H + 2 * padding - K) / stride + 1;
    int outW = (W + 2 * padding - K) / stride + 1;

    auto output = torch::empty({N, Cout, outH, outW}, x.options());

    // Define block dimensions; each thread computes one output element
    dim3 blockDim(16, 16);
    dim3 gridDim((outW + blockDim.x - 1) / blockDim.x,
                 (outH + blockDim.y - 1) / blockDim.y,
                 N * Cout);

    // Allocate shared memory for weights: size is Cin * K * K floats per block
    size_t shared_mem_size = sizeof(float) * Cin * K * K;

    conv2d_shared_kernel<<<gridDim, blockDim, shared_mem_size>>>(
        x.data_ptr<float>(),
        weight.data_ptr<float>(),
        output.data_ptr<float>(),
        N, Cin, H, W, Cout, K, outH, outW, stride, padding);

    cudaDeviceSynchronize();

    if (bias.has_value()) {
        output.add_(bias.value().view({1, -1, 1, 1}));
    }

    return output;
}

PYBIND11_MODULE(TORCH_EXTENSION_NAME, m) {
    m.def("forward", &forward, "CUDA forward function for 2D convolution with shared memory for weights");
}
Performance Metrics
Metric Value Unit Variance Samples
Executed Ipc Active 3.530 inst/cycle 0.000 5
Executed Ipc Elapsed 3.520 inst/cycle 0.000 5
Issue Slots Busy 88.194 % 0.000 5
Issued Ipc Active 3.530 inst/cycle 0.000 5
SM Busy 88.194 % 0.000 5
Memory Throughput 151389686940.316 byte/second 18230194542411916.000 5
Mem Busy 52.794 % 0.000 5
Max Bandwidth 34.766 % 0.000 5
L1/TEX Hit Rate 84.590 % 0.000 5
L2 Hit Rate 98.034 % 0.001 5
Mem Pipes Busy 48.524 % 0.000 5
Warp Cycles Per Issued Instruction 15.670 cycle 0.000 5
Warp Cycles Per Executed Instruction 15.670 cycle 0.000 5
Avg. Active Threads Per Warp 31.750 0.000 5
Avg. Not Predicated Off Threads Per Warp 28.720 0.000 5
Max Active Clusters 0.000 cluster 0.000 5
Max Cluster Size 8.000 block 0.000 5
Overall GPU Occupancy 0.000 % 0.000 5
Cluster Occupancy 0.000 % 0.000 5
Block Limit SM 32.000 block 0.000 5
Block Limit Registers 8.000 block 0.000 5
Block Limit Shared Mem 28.000 block 0.000 5
Block Limit Warps 8.000 block 0.000 5
Theoretical Active Warps per SM 64.000 warp 0.000 5
Theoretical Occupancy 100.000 % 0.000 5
Achieved Occupancy 86.540 % 0.000 5
Achieved Active Warps Per SM 55.386 warp 0.000 5
Analysis Rules
Rule Description
INF HighPipeUtilization ALU is the highest-utilized pipeline (55.4%) based on active cycles, taking into account the rates of its different instructions. It executes integer and logic operations. It is well-utilized, but should not be a bottleneck.
WRN Occupancy This kernel's theoretical occupancy is not impacted by any block limit. The difference between calculated theoretical (100.0%) and measured achieved occupancy (86.5%) can be the result of warp scheduling overheads or workload imbalances during the kernel execution. Load imbalances can occur between warps within a block as well as across blocks of the same kernel. See the CUDA Best Practices Guide (https://docs.nvidia.com/cuda/cuda-c-best-practices-guide/index.html#occupancy) for more details on optimizing occupancy.
Operation / Metric Value Unit
aten::to
CPU Time 239704.91 μs
Device Time 1283.25 μs
Self CPU Time 54.98 μs
Self Device Time 0.00 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
aten::_to_copy
CPU Time 239649.93 μs
Device Time 1283.25 μs
Self CPU Time 100.64 μs
Self Device Time 0.00 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
aten::empty_strided
CPU Time 237998.82 μs
Device Time 0.00 μs
Self CPU Time 116.32 μs
Self Device Time 0.00 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
cudaDeviceGetStreamPriorityRange
CPU Time 237252.45 μs
Device Time 0.00 μs
Self CPU Time 237252.45 μs
Self Device Time 0.00 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
cudaLaunchKernel
CPU Time 34041.73 μs
Device Time 24540.66 μs
Self CPU Time 34041.73 μs
Self Device Time 24540.66 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
conv2d_shared_kernel(float const*, float const*, float*, int, int, int, int, int, int, int, int, int, int)
CPU Time 0.00 μs
Device Time 4644804.41 μs
Self CPU Time 0.00 μs
Self Device Time 4644804.41 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
cudaDeviceSynchronize
CPU Time 4869419.59 μs
Device Time 547.48 μs
Self CPU Time 4869419.59 μs
Self Device Time 547.48 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
aten::zero_
CPU Time 38000.84 μs
Device Time 260569.75 μs
Self CPU Time 6755.13 μs
Self Device Time 0.00 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
aten::fill_
CPU Time 31247.73 μs
Device Time 260569.75 μs
Self CPU Time 10515.55 μs
Self Device Time 260569.75 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
void at::native::vectorized_elementwise_kernel<4, at::native::FillFunctor<int>, at::detail::Array<char*, 1> >(int, at::native::FillFunctor<int>, at::detail::Array<char*, 1>)
CPU Time 0.00 μs
Device Time 260569.75 μs
Self CPU Time 0.00 μs
Self Device Time 260569.75 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
Status: Completed
45302 warnings generated when compiling for host.
Suppressed 45327 warnings (45280 in non-user code, 47 NOLINT).
Use -header-filter=.* to display errors from all non-system headers. Use -system-headers to display errors from system headers as well.
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_1/task_63/b6_s2_conv2d_shared_atomic_minimized/base/base.cu:5:35 bugprone-macro-parentheses
5 | #define CHECK_CUDA(x) TORCH_CHECK(x.is_cuda(), #x " must be a CUDA tensor")
| ^
| ()
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_1/task_63/b6_s2_conv2d_shared_atomic_minimized/base/base.cu:6:41: warning: macro argument should be enclosed in parentheses [bugprone-macro-parentheses]
6 | #define CHECK_CONTIGUOUS(x) TORCH_CHECK(x.is_contiguous(), #x " must be contiguous")
| ^
| ()
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_1/task_63/b6_s2_conv2d_shared_atomic_minimized/base/base.cu:16:5: warning: 2 adjacent parameters of 'conv2d_shared_kernel' of similar type ('const float *__restrict') are easily swapped by mistake [bugprone-easily-swappable-parameters]
16 | const float* __restrict__ input,
| ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
17 | const float* __restrict__ weight,
| ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_1/task_63/b6_s2_conv2d_shared_atomic_minimized/base/base.cu:16:31: note: the first parameter in the range is 'input'
16 | const float* __restrict__ input,
| ^~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_1/task_63/b6_s2_conv2d_shared_atomic_minimized/base/base.cu:17:31: note: the last parameter in the range is 'weight'
17 | const float* __restrict__ weight,
| ^~~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_1/task_63/b6_s2_conv2d_shared_atomic_minimized/base/base.cu:19:5: warning: 2 adjacent parameters of 'conv2d_shared_kernel' of similar type ('int') are easily swapped by mistake [bugprone-easily-swappable-parameters]
19 | int N,
| ^~~~~~
20 | int Cin,
| ~~~~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_1/task_63/b6_s2_conv2d_shared_atomic_minimized/base/base.cu:19:9: note: the first parameter in the range is 'N'
19 | int N,
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_1/task_63/b6_s2_conv2d_shared_atomic_minimized/base/base.cu:20:9: note: the last parameter in the range is 'Cin'
20 | int Cin,
| ^~~
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_1/task_63/b6_s2_conv2d_shared_atomic_minimized/base/base.cu:22:5: warning: 3 adjacent parameters of 'conv2d_shared_kernel' of similar type ('int') are easily swapped by mistake [bugprone-easily-swappable-parameters]
22 | int W,
| ^~~~~~
23 | int Cout,
| ~~~~~~~~~
24 | int K,
| ~~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_1/task_63/b6_s2_conv2d_shared_atomic_minimized/base/base.cu:22:9: note: the first parameter in the range is 'W'
22 | int W,
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_1/task_63/b6_s2_conv2d_shared_atomic_minimized/base/base.cu:24:9: note: the last parameter in the range is 'K'
24 | int K,
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_1/task_63/b6_s2_conv2d_shared_atomic_minimized/base/base.cu:26:5: warning: 2 adjacent parameters of 'conv2d_shared_kernel' of similar type ('int') are easily swapped by mistake [bugprone-easily-swappable-parameters]
26 | int outW,
| ^~~~~~~~~
27 | int stride,
| ~~~~~~~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_1/task_63/b6_s2_conv2d_shared_atomic_minimized/base/base.cu:26:9: note: the first parameter in the range is 'outW'
26 | int outW,
| ^~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_1/task_63/b6_s2_conv2d_shared_atomic_minimized/base/base.cu:27:9: note: the last parameter in the range is 'stride'
27 | int stride,
| ^~~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_1/task_63/b6_s2_conv2d_shared_atomic_minimized/base/base.cu:31:16: warning: narrowing conversion from 'unsigned int' to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
31 | int b_oc = blockIdx.z; // ranges over N * Cout
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_1/task_63/b6_s2_conv2d_shared_atomic_minimized/base/base.cu:36:15: warning: narrowing conversion from 'unsigned int' to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
36 | int ox0 = blockIdx.x * blockDim.x;
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_1/task_63/b6_s2_conv2d_shared_atomic_minimized/base/base.cu:37:15: warning: narrowing conversion from 'unsigned int' to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
37 | int oy0 = blockIdx.y * blockDim.y;
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_1/task_63/b6_s2_conv2d_shared_atomic_minimized/base/base.cu:38:14: warning: narrowing conversion from 'unsigned int' to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
38 | int tx = threadIdx.x;
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_1/task_63/b6_s2_conv2d_shared_atomic_minimized/base/base.cu:39:14: warning: narrowing conversion from 'unsigned int' to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
39 | int ty = threadIdx.y;
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_1/task_63/b6_s2_conv2d_shared_atomic_minimized/base/base.cu:47:15: warning: narrowing conversion from 'unsigned int' to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
47 | int tid = ty * blockDim.x + tx;
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_1/task_63/b6_s2_conv2d_shared_atomic_minimized/base/base.cu:48:46: warning: narrowing conversion from 'unsigned int' to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
48 | for (int i = tid; i < total_weight; i += blockDim.x * blockDim.y) {
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_1/task_63/b6_s2_conv2d_shared_atomic_minimized/base/base.cu:82:19: warning: the parameter 'x' is copied for each invocation but only used as a const reference; consider making it a const reference [performance-unnecessary-value-param]
82 | torch::Tensor x,
| ^
| const &
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_1/task_63/b6_s2_conv2d_shared_atomic_minimized/base/base.cu:83:19: warning: the parameter 'weight' is copied for each invocation but only used as a const reference; consider making it a const reference [performance-unnecessary-value-param]
83 | torch::Tensor weight,
| ^
| const &
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_1/task_63/b6_s2_conv2d_shared_atomic_minimized/base/base.cu:86:5: warning: 3 adjacent parameters of 'forward' of similar type ('int') are easily swapped by mistake [bugprone-easily-swappable-parameters]
86 | int padding,
| ^~~~~~~~~~~~
87 | int dilation, // dilation is not applied in this kernel
| ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
88 | int groups) {
| ~~~~~~~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_1/task_63/b6_s2_conv2d_shared_atomic_minimized/base/base.cu:86:9: note: the first parameter in the range is 'padding'
86 | int padding,
| ^~~~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_1/task_63/b6_s2_conv2d_shared_atomic_minimized/base/base.cu:88:9: note: the last parameter in the range is 'groups'
88 | int groups) {
| ^~~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_1/task_63/b6_s2_conv2d_shared_atomic_minimized/base/base.cu:97:13: warning: narrowing conversion from 'int64_t' (aka 'long') to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
97 | int N = x.size(0);
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_1/task_63/b6_s2_conv2d_shared_atomic_minimized/base/base.cu:98:15: warning: narrowing conversion from 'int64_t' (aka 'long') to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
98 | int Cin = x.size(1);
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_1/task_63/b6_s2_conv2d_shared_atomic_minimized/base/base.cu:99:13: warning: narrowing conversion from 'int64_t' (aka 'long') to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
99 | int H = x.size(2);
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_1/task_63/b6_s2_conv2d_shared_atomic_minimized/base/base.cu:100:13: warning: narrowing conversion from 'int64_t' (aka 'long') to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
100 | int W = x.size(3);
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_1/task_63/b6_s2_conv2d_shared_atomic_minimized/base/base.cu:101:16: warning: narrowing conversion from 'int64_t' (aka 'long') to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
101 | int Cout = weight.size(0);
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_1/task_63/b6_s2_conv2d_shared_atomic_minimized/base/base.cu:102:13: warning: narrowing conversion from 'int64_t' (aka 'long') to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
102 | int K = weight.size(2); // assuming square kernel (K x K)
| ^