← Back to Leaderboard

The AI CUDA Engineer 👷

63_conv_standard_2D__square_input__square_kernelconv2d_coalesced_coalescing_base

Level 1 • Task 63
import torch
import torch.nn as nn
import torch.nn.functional as F


def module_fn(
    x: torch.Tensor,
    weight: torch.Tensor,
    bias: torch.Tensor,
    stride: int,
    padding: int,
    dilation: int,
    groups: int,
) -> torch.Tensor:
    """
    Performs a standard 2D convolution operation with a square input and square kernel.

    Args:
        x (torch.Tensor): Input tensor.
        weight (torch.Tensor): Weight tensor.
        bias (torch.Tensor): Bias tensor.
        stride (int): Stride of the convolution.
        padding (int): Padding applied to the input.
        dilation (int): Dilation of the convolution.
        groups (int): Number of blocked connections from input channels to output channels.

    Returns:
        torch.Tensor: Output tensor.
    """
    return F.conv2d(
        x,
        weight,
        bias,
        stride=stride,
        padding=padding,
        dilation=dilation,
        groups=groups,
    )


class Model(nn.Module):
    """
    Performs a standard 2D convolution operation with a square input and square kernel.

    Args:
        in_channels (int): Number of channels in the input tensor.
        out_channels (int): Number of channels produced by the convolution.
        kernel_size (int): Size of the square convolution kernel.
        stride (int): Stride of the convolution.
        padding (int): Padding applied to the input.
        dilation (int): Spacing between kernel elements.
        groups (int): Number of blocked connections from input channels to output channels.
        bias (bool): If `True`, adds a learnable bias to the output.
    """

    def __init__(
        self,
        in_channels: int,
        out_channels: int,
        kernel_size: int,
        stride: int,
        padding: int,
        dilation: int,
        groups: int,
        bias: bool,
    ):
        super(Model, self).__init__()
        # Create a Conv2d layer to get the same initialization
        conv = nn.Conv2d(
            in_channels,
            out_channels,
            kernel_size=kernel_size,
            stride=stride,
            padding=padding,
            dilation=dilation,
            groups=groups,
            bias=bias,
        )
        # Copy the initialized parameters
        self.weight = nn.Parameter(conv.weight.clone())
        self.bias = nn.Parameter(conv.bias.clone()) if bias else None

        self.stride = stride
        self.padding = padding
        self.dilation = dilation
        self.groups = groups

    def forward(
        self,
        x: torch.Tensor,
        fn=module_fn,
    ) -> torch.Tensor:
        """
        Performs the 2D convolution.

        Args:
            x (torch.Tensor): Input tensor of shape (batch_size, in_channels, height, width).

        Returns:
            torch.Tensor: Output tensor of shape (batch_size, out_channels, height_out, width_out).
        """
        return fn(
            x,
            self.weight,
            self.bias,
            self.stride,
            self.padding,
            self.dilation,
            self.groups,
        )


# Constants
batch_size = 16
in_channels = 3
out_channels = 64
kernel_size = 3
width = 256
height = 256
stride = 1
padding = 0
dilation = 1
groups = 1
bias = False


def get_inputs():
    x = torch.randn(batch_size, in_channels, height, width)
    return [x]


def get_init_inputs():
    return [
        in_channels,
        out_channels,
        kernel_size,
        stride,
        padding,
        dilation,
        groups,
        bias,
    ]
import torch
import torch.nn as nn


class Model(nn.Module):
    """
    Performs a standard 2D convolution operation with a square input and square kernel.

    Args:
        in_channels (int): Number of channels in the input tensor.
        out_channels (int): Number of channels produced by the convolution.
        kernel_size (int): Size of the square convolution kernel.
        stride (int, optional): Stride of the convolution. Defaults to 1.
        padding (int, optional): Padding applied to the input. Defaults to 0.
        dilation (int, optional): Spacing between kernel elements. Defaults to 1.
        groups (int, optional): Number of blocked connections from input channels to output channels. Defaults to 1.
        bias (bool, optional): If `True`, adds a learnable bias to the output. Defaults to `False`.
    """

    def __init__(
        self,
        in_channels: int,
        out_channels: int,
        kernel_size: int,
        stride: int = 1,
        padding: int = 0,
        dilation: int = 1,
        groups: int = 1,
        bias: bool = False,
    ):
        super(Model, self).__init__()
        self.conv2d = nn.Conv2d(
            in_channels,
            out_channels,
            (kernel_size, kernel_size),
            stride=stride,
            padding=padding,
            dilation=dilation,
            groups=groups,
            bias=bias,
        )

    def forward(self, x: torch.Tensor) -> torch.Tensor:
        """
        Performs the 2D convolution.

        Args:
            x (torch.Tensor): Input tensor of shape (batch_size, in_channels, height, width).

        Returns:
            torch.Tensor: Output tensor of shape (batch_size, out_channels, height_out, width_out).
        """
        return self.conv2d(x)


# Test code
batch_size = 16
in_channels = 3
out_channels = 64
kernel_size = 3
width = 256
height = 256
stride = 1
padding = 0
dilation = 1
groups = 1
bias = False


def get_inputs():
    x = torch.randn(batch_size, in_channels, height, width)
    return [x]


def get_init_inputs():
    return [
        in_channels,
        out_channels,
        kernel_size,
        stride,
        padding,
        dilation,
        groups,
        bias,
    ]  # Provide in_channels, out_channels, kernel_size for initialization

Kernel Information

Related Kernels (Level 1, Task 63 • 63_conv_standard_2D__square_input__square_kernel)

Rank Kernel Name Runtime (ms) Speedup Native Speedup Compile
🥇 63_conv_standard_2D__square_input__square_kernel 0.23 1.00 1.68
🥇 adaptive_conv2d_cuda_base 0.23 1.00 1.68
🥇 conv2d_minimized_warp_divergence_base 0.23 1.00 1.68
🥇 adaptive_conv2d_cuda_base 0.23 1.00 1.68
5 conv2d_shared_mem_optimized_base 0.43 0.54 0.90
6 conv2d_coalesced_coalescing_base 0.85 0.27 0.45
7 conv2d_shared_mem_optimized_base 1.10 0.21 0.35
8 conv2d_shared_mem_optimized_base 1.10 0.21 0.35
8 conv2d_shared_mem_opt_base_base 1.10 0.21 0.35
10 63_conv_warp_optimized_base 1.18 0.19 0.33
11 mod_conv2d_kernel_modular_base 1.20 0.19 0.32
12 conv2d_unrolled_shared_base 1.22 0.19 0.32
13 63_conv_optimized_thread_mapping_base 1.34 0.17 0.29
14 constant_memory_optim_conv2d_edit_1 1.35 0.17 0.28
15 conv2d_shared_atomic_minimized_base 1.39 0.17 0.28
16 conv2d_grid_stride_base 1.41 0.16 0.27
17 atomic_minimized_conv2d_base_base 1.42 0.16 0.27
18 balanced_conv2d_cuda_base 1.44 0.16 0.27
19 block_size_optimization_conv2d_base 1.45 0.16 0.27
20 block_size_optimization_conv2d_edit_1 1.47 0.16 0.26
#include <torch/extension.h>
#include <cuda.h>
#include <cuda_runtime.h>

#define BLOCK_SIZE 16
#define KERNEL_SIZE 3

// This kernel assumes stride == 1, dilation == 1, groups == 1 and a 3x3 kernel.
// It loads input tiles and weight tiles into shared memory using a 1D loop to ensure global memory coalescing.

__global__ void conv2d_coalesced_kernel(
    const float* __restrict__ input,
    const float* __restrict__ weight,
    float* __restrict__ output,
    int batch_size,
    int in_channels,
    int out_channels,
    int input_height,
    int input_width,
    int output_height,
    int output_width,
    int stride,
    int padding) {

    // For stride == 1, the shared tile dimension is BLOCK_SIZE + KERNEL_SIZE - 1.
    const int tile_dim = BLOCK_SIZE + KERNEL_SIZE - 1; 
    __shared__ float shared_input[tile_dim * tile_dim];
    __shared__ float shared_weight[KERNEL_SIZE * KERNEL_SIZE];

    // Compute output spatial coordinates for this thread
    int out_x = blockIdx.x * BLOCK_SIZE + threadIdx.x;
    int out_y = blockIdx.y * BLOCK_SIZE + threadIdx.y;
    int b = blockIdx.z;

    // Compute the top-left coordinate of the input tile
    int in_x_origin = blockIdx.x * BLOCK_SIZE - padding;
    int in_y_origin = blockIdx.y * BLOCK_SIZE - padding;

    // Flatten thread index within the block for coalesced loads
    int t_idx = threadIdx.y * blockDim.x + threadIdx.x;
    int threads_per_block = blockDim.x * blockDim.y;

    // Loop over output channels
    for (int oc = 0; oc < out_channels; ++oc) {
        float result = 0.0f;
        // Sum over input channels
        for (int ic = 0; ic < in_channels; ++ic) {
            // Load the input tile for the current (b, ic) channel into shared memory.
            int total_tile = tile_dim * tile_dim;
            for (int index = t_idx; index < total_tile; index += threads_per_block) {
                int i = index / tile_dim;
                int j = index % tile_dim;
                int in_i = in_y_origin + i;
                int in_j = in_x_origin + j;
                if (in_i >= 0 && in_i < input_height && in_j >= 0 && in_j < input_width) {
                    shared_input[index] = input[((b * in_channels + ic) * input_height + in_i) * input_width + in_j];
                } else {
                    shared_input[index] = 0.0f;
                }
            }
            
            // Load the 3x3 kernel for the current (oc, ic) pair into shared memory
            int total_weight = KERNEL_SIZE * KERNEL_SIZE;
            for (int index = t_idx; index < total_weight; index += threads_per_block) {
                shared_weight[index] = weight[((oc * in_channels + ic) * total_weight) + index];
            }
            
            __syncthreads();
            
            // Each thread computes the convolution for its output pixel if within bounds
            if (out_y < output_height && out_x < output_width) {
                int local_y = threadIdx.y;
                int local_x = threadIdx.x;
                float sum = 0.0f;
                #pragma unroll
                for (int ki = 0; ki < KERNEL_SIZE; ++ki) {
                    #pragma unroll
                    for (int kj = 0; kj < KERNEL_SIZE; ++kj) {
                        int shared_index = (local_y + ki) * tile_dim + (local_x + kj);
                        sum += shared_input[shared_index] * shared_weight[ki * KERNEL_SIZE + kj];
                    }
                }
                result += sum;
            }
            __syncthreads();
        }
        // Write the result to global memory in a coalesced manner
        if (out_y < output_height && out_x < output_width) {
            output[((b * out_channels + oc) * output_height + out_y) * output_width + out_x] = result;
        }
        __syncthreads();
    }
}


torch::Tensor forward(
    torch::Tensor x,
    torch::Tensor weight,
    torch::optional<torch::Tensor> bias,
    int stride,
    int padding,
    int dilation,
    int groups) {

    TORCH_CHECK(x.is_cuda(), "Input must be a CUDA tensor");
    TORCH_CHECK(weight.is_cuda(), "Weight must be a CUDA tensor");
    // This kernel only supports stride==1, dilation==1, groups==1 and 3x3 kernels
    TORCH_CHECK(stride == 1, "Only stride==1 is supported in conv2d_coalesced_kernel");
    TORCH_CHECK(dilation == 1, "Only dilation==1 is supported in conv2d_coalesced_kernel");
    TORCH_CHECK(groups == 1, "Only groups==1 is supported in conv2d_coalesced_kernel");
    TORCH_CHECK(weight.size(2) == KERNEL_SIZE && weight.size(3) == KERNEL_SIZE, "Only 3x3 kernel supported");

    int batch_size = x.size(0);
    int in_channels = x.size(1);
    int input_height = x.size(2);
    int input_width = x.size(3);
    int out_channels = weight.size(0);
    int output_height = (input_height + 2 * padding - KERNEL_SIZE) / stride + 1;
    int output_width = (input_width + 2 * padding - KERNEL_SIZE) / stride + 1;

    auto output = torch::empty({batch_size, out_channels, output_height, output_width}, x.options());

    dim3 threads(BLOCK_SIZE, BLOCK_SIZE);
    dim3 blocks((output_width + BLOCK_SIZE - 1) / BLOCK_SIZE,
                (output_height + BLOCK_SIZE - 1) / BLOCK_SIZE,
                batch_size);

    conv2d_coalesced_kernel<<<blocks, threads>>>(
        x.data_ptr<float>(),
        weight.data_ptr<float>(),
        output.data_ptr<float>(),
        batch_size,
        in_channels,
        out_channels,
        input_height,
        input_width,
        output_height,
        output_width,
        stride,
        padding
    );

    if (bias.has_value()) {
        output.add_(bias.value().view({1, -1, 1, 1}));
    }

    return output;
}

PYBIND11_MODULE(TORCH_EXTENSION_NAME, m) {
    m.def("forward", &forward, "CUDA forward function for conv2d with memory coalescing");
}
Performance Metrics
Metric Value Unit Variance Samples
Executed Ipc Active 2.530 inst/cycle 0.000 5
Executed Ipc Elapsed 2.456 inst/cycle 0.000 5
Issue Slots Busy 63.374 % 0.002 5
Issued Ipc Active 2.534 inst/cycle 0.000 5
SM Busy 63.374 % 0.002 5
Memory Throughput 256413316518.146 byte/second 454203505404347648.000 5
Mem Busy 80.236 % 0.025 5
Max Bandwidth 44.494 % 0.009 5
L1/TEX Hit Rate 77.152 % 0.003 5
L2 Hit Rate 94.458 % 0.094 5
Mem Pipes Busy 43.706 % 0.008 5
Warp Cycles Per Issued Instruction 23.354 cycle 0.000 5
Warp Cycles Per Executed Instruction 23.408 cycle 0.000 5
Avg. Active Threads Per Warp 30.370 0.000 5
Avg. Not Predicated Off Threads Per Warp 28.830 0.000 5
Max Active Clusters 0.000 cluster 0.000 5
Max Cluster Size 8.000 block 0.000 5
Overall GPU Occupancy 0.000 % 0.000 5
Cluster Occupancy 0.000 % 0.000 5
Block Limit SM 32.000 block 0.000 5
Block Limit Registers 8.000 block 0.000 5
Block Limit Shared Mem 26.000 block 0.000 5
Block Limit Warps 8.000 block 0.000 5
Theoretical Active Warps per SM 64.000 warp 0.000 5
Theoretical Occupancy 100.000 % 0.000 5
Achieved Occupancy 92.486 % 0.002 5
Achieved Active Warps Per SM 59.190 warp 0.001 5
Analysis Rules
Rule Description
INF HighPipeUtilization ALU is the highest-utilized pipeline (31.9%) based on active cycles, taking into account the rates of its different instructions. It executes integer and logic operations. It is well-utilized, but should not be a bottleneck.
INF CPIStall Check the Warp Stall Sampling (All Cycles) table for the top stall locations in your source based on sampling data. The Kernel Profiling Guide (https://docs.nvidia.com/nsight-compute/ProfilingGuide/index.html#metrics-reference) provides more details on each stall reason.
INF Occupancy This kernel's theoretical occupancy is not impacted by any block limit.
Operation / Metric Value Unit
aten::to
CPU Time 252212.27 μs
Device Time 1146.24 μs
Self CPU Time 53.20 μs
Self Device Time 0.00 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
aten::_to_copy
CPU Time 252159.08 μs
Device Time 1146.24 μs
Self CPU Time 114.90 μs
Self Device Time 0.00 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
cudaLaunchKernel
CPU Time 3669652.44 μs
Device Time 11234.02 μs
Self CPU Time 3669652.44 μs
Self Device Time 11234.02 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
conv2d_coalesced_kernel(float const*, float const*, float*, int, int, int, int, int, int, int, int, int)
CPU Time 0.00 μs
Device Time 3677829.28 μs
Self CPU Time 0.00 μs
Self Device Time 3677829.28 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
cudaEventRecord
CPU Time 9928.40 μs
Device Time 22236.35 μs
Self CPU Time 9928.40 μs
Self Device Time 22236.35 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
aten::zero_
CPU Time 3434953.36 μs
Device Time 339142.65 μs
Self CPU Time 9000.25 μs
Self Device Time 0.00 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
aten::fill_
CPU Time 3425955.21 μs
Device Time 339142.65 μs
Self CPU Time 12230.36 μs
Self Device Time 339142.65 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
void at::native::vectorized_elementwise_kernel<4, at::native::FillFunctor<int>, at::detail::Array<char*, 1> >(int, at::native::FillFunctor<int>, at::detail::Array<char*, 1>)
CPU Time 0.00 μs
Device Time 339142.65 μs
Self CPU Time 0.00 μs
Self Device Time 339142.65 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
Status: Completed
45301 warnings generated when compiling for host.
Suppressed 45327 warnings (45280 in non-user code, 47 NOLINT).
Use -header-filter=.* to display errors from all non-system headers. Use -system-headers to display errors from system headers as well.
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_1/task_63/b10_s3_conv2d_coalesced_coalescing/base/base.cu:12:5 bugprone-easily-swappable-parameters
12 | const float* __restrict__ input,
| ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
13 | const float* __restrict__ weight,
| ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_1/task_63/b10_s3_conv2d_coalesced_coalescing/base/base.cu:12:31: note: the first parameter in the range is 'input'
12 | const float* __restrict__ input,
| ^~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_1/task_63/b10_s3_conv2d_coalesced_coalescing/base/base.cu:13:31: note: the last parameter in the range is 'weight'
13 | const float* __restrict__ weight,
| ^~~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_1/task_63/b10_s3_conv2d_coalesced_coalescing/base/base.cu:15:5: warning: 3 adjacent parameters of 'conv2d_coalesced_kernel' of similar type ('int') are easily swapped by mistake [bugprone-easily-swappable-parameters]
15 | int batch_size,
| ^~~~~~~~~~~~~~~
16 | int in_channels,
| ~~~~~~~~~~~~~~~~
17 | int out_channels,
| ~~~~~~~~~~~~~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_1/task_63/b10_s3_conv2d_coalesced_coalescing/base/base.cu:15:9: note: the first parameter in the range is 'batch_size'
15 | int batch_size,
| ^~~~~~~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_1/task_63/b10_s3_conv2d_coalesced_coalescing/base/base.cu:17:9: note: the last parameter in the range is 'out_channels'
17 | int out_channels,
| ^~~~~~~~~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_1/task_63/b10_s3_conv2d_coalesced_coalescing/base/base.cu:19:5: warning: 2 adjacent parameters of 'conv2d_coalesced_kernel' of similar type ('int') are easily swapped by mistake [bugprone-easily-swappable-parameters]
19 | int input_width,
| ^~~~~~~~~~~~~~~~
20 | int output_height,
| ~~~~~~~~~~~~~~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_1/task_63/b10_s3_conv2d_coalesced_coalescing/base/base.cu:19:9: note: the first parameter in the range is 'input_width'
19 | int input_width,
| ^~~~~~~~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_1/task_63/b10_s3_conv2d_coalesced_coalescing/base/base.cu:20:9: note: the last parameter in the range is 'output_height'
20 | int output_height,
| ^~~~~~~~~~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_1/task_63/b10_s3_conv2d_coalesced_coalescing/base/base.cu:21:5: warning: 3 adjacent parameters of 'conv2d_coalesced_kernel' of similar type ('int') are easily swapped by mistake [bugprone-easily-swappable-parameters]
21 | int output_width,
| ^~~~~~~~~~~~~~~~~
22 | int stride,
| ~~~~~~~~~~~
23 | int padding) {
| ~~~~~~~~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_1/task_63/b10_s3_conv2d_coalesced_coalescing/base/base.cu:21:9: note: the first parameter in the range is 'output_width'
21 | int output_width,
| ^~~~~~~~~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_1/task_63/b10_s3_conv2d_coalesced_coalescing/base/base.cu:23:9: note: the last parameter in the range is 'padding'
23 | int padding) {
| ^~~~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_1/task_63/b10_s3_conv2d_coalesced_coalescing/base/base.cu:31:17: warning: narrowing conversion from 'unsigned int' to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
31 | int out_x = blockIdx.x * BLOCK_SIZE + threadIdx.x;
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_1/task_63/b10_s3_conv2d_coalesced_coalescing/base/base.cu:32:17: warning: narrowing conversion from 'unsigned int' to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
32 | int out_y = blockIdx.y * BLOCK_SIZE + threadIdx.y;
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_1/task_63/b10_s3_conv2d_coalesced_coalescing/base/base.cu:33:13: warning: narrowing conversion from 'unsigned int' to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
33 | int b = blockIdx.z;
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_1/task_63/b10_s3_conv2d_coalesced_coalescing/base/base.cu:36:23: warning: narrowing conversion from 'unsigned int' to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
36 | int in_x_origin = blockIdx.x * BLOCK_SIZE - padding;
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_1/task_63/b10_s3_conv2d_coalesced_coalescing/base/base.cu:37:23: warning: narrowing conversion from 'unsigned int' to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
37 | int in_y_origin = blockIdx.y * BLOCK_SIZE - padding;
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_1/task_63/b10_s3_conv2d_coalesced_coalescing/base/base.cu:40:17: warning: narrowing conversion from 'unsigned int' to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
40 | int t_idx = threadIdx.y * blockDim.x + threadIdx.x;
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_1/task_63/b10_s3_conv2d_coalesced_coalescing/base/base.cu:41:29: warning: narrowing conversion from 'unsigned int' to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
41 | int threads_per_block = blockDim.x * blockDim.y;
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_1/task_63/b10_s3_conv2d_coalesced_coalescing/base/base.cu:72:31: warning: narrowing conversion from 'unsigned int' to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
72 | int local_y = threadIdx.y;
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_1/task_63/b10_s3_conv2d_coalesced_coalescing/base/base.cu:73:31: warning: narrowing conversion from 'unsigned int' to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
73 | int local_x = threadIdx.x;
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_1/task_63/b10_s3_conv2d_coalesced_coalescing/base/base.cu:97:19: warning: the parameter 'x' is copied for each invocation but only used as a const reference; consider making it a const reference [performance-unnecessary-value-param]
97 | torch::Tensor x,
| ^
| const &
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_1/task_63/b10_s3_conv2d_coalesced_coalescing/base/base.cu:98:19: warning: the parameter 'weight' is copied for each invocation but only used as a const reference; consider making it a const reference [performance-unnecessary-value-param]
98 | torch::Tensor weight,
| ^
| const &
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_1/task_63/b10_s3_conv2d_coalesced_coalescing/base/base.cu:101:5: warning: 3 adjacent parameters of 'forward' of similar type ('int') are easily swapped by mistake [bugprone-easily-swappable-parameters]
101 | int padding,
| ^~~~~~~~~~~~
102 | int dilation,
| ~~~~~~~~~~~~~
103 | int groups) {
| ~~~~~~~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_1/task_63/b10_s3_conv2d_coalesced_coalescing/base/base.cu:101:9: note: the first parameter in the range is 'padding'
101 | int padding,
| ^~~~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_1/task_63/b10_s3_conv2d_coalesced_coalescing/base/base.cu:103:9: note: the last parameter in the range is 'groups'
103 | int groups) {
| ^~~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_1/task_63/b10_s3_conv2d_coalesced_coalescing/base/base.cu:113:22: warning: narrowing conversion from 'int64_t' (aka 'long') to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
113 | int batch_size = x.size(0);
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_1/task_63/b10_s3_conv2d_coalesced_coalescing/base/base.cu:114:23: warning: narrowing conversion from 'int64_t' (aka 'long') to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
114 | int in_channels = x.size(1);
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_1/task_63/b10_s3_conv2d_coalesced_coalescing/base/base.cu:115:24: warning: narrowing conversion from 'int64_t' (aka 'long') to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
115 | int input_height = x.size(2);
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_1/task_63/b10_s3_conv2d_coalesced_coalescing/base/base.cu:116:23: warning: narrowing conversion from 'int64_t' (aka 'long') to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
116 | int input_width = x.size(3);
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_1/task_63/b10_s3_conv2d_coalesced_coalescing/base/base.cu:117:24: warning: narrowing conversion from 'int64_t' (aka 'long') to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
117 | int out_channels = weight.size(0);
| ^