← Back to Leaderboard

The AI CUDA Engineer 👷

63_conv_standard_2D__square_input__square_kerneladaptive_conv2d_cuda_base

Level 1 • Task 63
import torch
import torch.nn as nn
import torch.nn.functional as F


def module_fn(
    x: torch.Tensor,
    weight: torch.Tensor,
    bias: torch.Tensor,
    stride: int,
    padding: int,
    dilation: int,
    groups: int,
) -> torch.Tensor:
    """
    Performs a standard 2D convolution operation with a square input and square kernel.

    Args:
        x (torch.Tensor): Input tensor.
        weight (torch.Tensor): Weight tensor.
        bias (torch.Tensor): Bias tensor.
        stride (int): Stride of the convolution.
        padding (int): Padding applied to the input.
        dilation (int): Dilation of the convolution.
        groups (int): Number of blocked connections from input channels to output channels.

    Returns:
        torch.Tensor: Output tensor.
    """
    return F.conv2d(
        x,
        weight,
        bias,
        stride=stride,
        padding=padding,
        dilation=dilation,
        groups=groups,
    )


class Model(nn.Module):
    """
    Performs a standard 2D convolution operation with a square input and square kernel.

    Args:
        in_channels (int): Number of channels in the input tensor.
        out_channels (int): Number of channels produced by the convolution.
        kernel_size (int): Size of the square convolution kernel.
        stride (int): Stride of the convolution.
        padding (int): Padding applied to the input.
        dilation (int): Spacing between kernel elements.
        groups (int): Number of blocked connections from input channels to output channels.
        bias (bool): If `True`, adds a learnable bias to the output.
    """

    def __init__(
        self,
        in_channels: int,
        out_channels: int,
        kernel_size: int,
        stride: int,
        padding: int,
        dilation: int,
        groups: int,
        bias: bool,
    ):
        super(Model, self).__init__()
        # Create a Conv2d layer to get the same initialization
        conv = nn.Conv2d(
            in_channels,
            out_channels,
            kernel_size=kernel_size,
            stride=stride,
            padding=padding,
            dilation=dilation,
            groups=groups,
            bias=bias,
        )
        # Copy the initialized parameters
        self.weight = nn.Parameter(conv.weight.clone())
        self.bias = nn.Parameter(conv.bias.clone()) if bias else None

        self.stride = stride
        self.padding = padding
        self.dilation = dilation
        self.groups = groups

    def forward(
        self,
        x: torch.Tensor,
        fn=module_fn,
    ) -> torch.Tensor:
        """
        Performs the 2D convolution.

        Args:
            x (torch.Tensor): Input tensor of shape (batch_size, in_channels, height, width).

        Returns:
            torch.Tensor: Output tensor of shape (batch_size, out_channels, height_out, width_out).
        """
        return fn(
            x,
            self.weight,
            self.bias,
            self.stride,
            self.padding,
            self.dilation,
            self.groups,
        )


# Constants
batch_size = 16
in_channels = 3
out_channels = 64
kernel_size = 3
width = 256
height = 256
stride = 1
padding = 0
dilation = 1
groups = 1
bias = False


def get_inputs():
    x = torch.randn(batch_size, in_channels, height, width)
    return [x]


def get_init_inputs():
    return [
        in_channels,
        out_channels,
        kernel_size,
        stride,
        padding,
        dilation,
        groups,
        bias,
    ]
import torch
import torch.nn as nn


class Model(nn.Module):
    """
    Performs a standard 2D convolution operation with a square input and square kernel.

    Args:
        in_channels (int): Number of channels in the input tensor.
        out_channels (int): Number of channels produced by the convolution.
        kernel_size (int): Size of the square convolution kernel.
        stride (int, optional): Stride of the convolution. Defaults to 1.
        padding (int, optional): Padding applied to the input. Defaults to 0.
        dilation (int, optional): Spacing between kernel elements. Defaults to 1.
        groups (int, optional): Number of blocked connections from input channels to output channels. Defaults to 1.
        bias (bool, optional): If `True`, adds a learnable bias to the output. Defaults to `False`.
    """

    def __init__(
        self,
        in_channels: int,
        out_channels: int,
        kernel_size: int,
        stride: int = 1,
        padding: int = 0,
        dilation: int = 1,
        groups: int = 1,
        bias: bool = False,
    ):
        super(Model, self).__init__()
        self.conv2d = nn.Conv2d(
            in_channels,
            out_channels,
            (kernel_size, kernel_size),
            stride=stride,
            padding=padding,
            dilation=dilation,
            groups=groups,
            bias=bias,
        )

    def forward(self, x: torch.Tensor) -> torch.Tensor:
        """
        Performs the 2D convolution.

        Args:
            x (torch.Tensor): Input tensor of shape (batch_size, in_channels, height, width).

        Returns:
            torch.Tensor: Output tensor of shape (batch_size, out_channels, height_out, width_out).
        """
        return self.conv2d(x)


# Test code
batch_size = 16
in_channels = 3
out_channels = 64
kernel_size = 3
width = 256
height = 256
stride = 1
padding = 0
dilation = 1
groups = 1
bias = False


def get_inputs():
    x = torch.randn(batch_size, in_channels, height, width)
    return [x]


def get_init_inputs():
    return [
        in_channels,
        out_channels,
        kernel_size,
        stride,
        padding,
        dilation,
        groups,
        bias,
    ]  # Provide in_channels, out_channels, kernel_size for initialization

Kernel Information

Related Kernels (Level 1, Task 63 • 63_conv_standard_2D__square_input__square_kernel)

Rank Kernel Name Runtime (ms) Speedup Native Speedup Compile
🥇 63_conv_standard_2D__square_input__square_kernel 0.23 1.00 1.68
🥇 adaptive_conv2d_cuda_base 0.23 1.00 1.68
🥇 conv2d_minimized_warp_divergence_base 0.23 1.00 1.68
🥇 adaptive_conv2d_cuda_base 0.23 1.00 1.68
5 conv2d_shared_mem_optimized_base 0.43 0.54 0.90
6 conv2d_coalesced_coalescing_base 0.85 0.27 0.45
7 conv2d_shared_mem_optimized_base 1.10 0.21 0.35
8 conv2d_shared_mem_optimized_base 1.10 0.21 0.35
8 conv2d_shared_mem_opt_base_base 1.10 0.21 0.35
10 63_conv_warp_optimized_base 1.18 0.19 0.33
11 mod_conv2d_kernel_modular_base 1.20 0.19 0.32
12 conv2d_unrolled_shared_base 1.22 0.19 0.32
13 63_conv_optimized_thread_mapping_base 1.34 0.17 0.29
14 constant_memory_optim_conv2d_edit_1 1.35 0.17 0.28
15 conv2d_shared_atomic_minimized_base 1.39 0.17 0.28
16 conv2d_grid_stride_base 1.41 0.16 0.27
17 atomic_minimized_conv2d_base_base 1.42 0.16 0.27
18 balanced_conv2d_cuda_base 1.44 0.16 0.27
19 block_size_optimization_conv2d_base 1.45 0.16 0.27
20 block_size_optimization_conv2d_edit_1 1.47 0.16 0.26
#include <torch/extension.h>
#include <cuda.h>
#include <cuda_runtime.h>

#define BLOCK_SIZE 16
#define KERNEL_SIZE 3
#define SHARED_SIZE (BLOCK_SIZE + KERNEL_SIZE - 1)
#define MIN_CHANNELS_THRESHOLD 16
#define MIN_SIZE_THRESHOLD 32

__global__ void conv2d_kernel_shared(
    const float* __restrict__ input,
    const float* __restrict__ weight,
    float* __restrict__ output,
    const int batch_size,
    const int in_channels,
    const int out_channels,
    const int input_height,
    const int input_width,
    const int output_height,
    const int output_width,
    const int stride,
    const int padding) {
    __shared__ float shared_input[SHARED_SIZE][SHARED_SIZE];
    __shared__ float shared_weight[KERNEL_SIZE][KERNEL_SIZE];
    
    const int tx = threadIdx.x;
    const int ty = threadIdx.y;
    const int bx = blockIdx.x * BLOCK_SIZE;
    const int by = blockIdx.y * BLOCK_SIZE;
    const int b = blockIdx.z;
    
    const int x = bx + tx;
    const int y = by + ty;
    
    for (int oc = 0; oc < out_channels; ++oc) {
        float sum = 0.0f;
        
        for (int ic = 0; ic < in_channels; ++ic) {
            if (tx < KERNEL_SIZE && ty < KERNEL_SIZE) {
                int weight_idx = ((oc * in_channels + ic) * KERNEL_SIZE + ty) * KERNEL_SIZE + tx;
                shared_weight[ty][tx] = weight[weight_idx];
            }
            __syncthreads();
            
            for (int i = ty; i < SHARED_SIZE; i += BLOCK_SIZE) {
                for (int j = tx; j < SHARED_SIZE; j += BLOCK_SIZE) {
                    int ih = by + i - padding;
                    int iw = bx + j - padding;
                    
                    if (ih >= 0 && ih < input_height && iw >= 0 && iw < input_width) {
                        shared_input[i][j] = input[((b * in_channels + ic) * input_height + ih) * input_width + iw];
                    } else {
                        shared_input[i][j] = 0.0f;
                    }
                }
            }
            __syncthreads();
            
            if (x < output_width && y < output_height) {
                for (int ki = 0; ki < KERNEL_SIZE; ++ki) {
                    for (int kj = 0; kj < KERNEL_SIZE; ++kj) {
                        int sy = ty * stride + ki;
                        int sx = tx * stride + kj;
                        sum += shared_input[sy][sx] * shared_weight[ki][kj];
                    }
                }
            }
            __syncthreads();
        }
        
        if (x < output_width && y < output_height) {
            int output_idx = ((b * out_channels + oc) * output_height + y) * output_width + x;
            output[output_idx] = sum;
        }
    }
}

torch::Tensor forward(
    torch::Tensor x,
    torch::Tensor weight,
    torch::optional<torch::Tensor> bias,
    int stride,
    int padding,
    int dilation,
    int groups) {
    
    TORCH_CHECK(x.is_cuda(), "Input must be a CUDA tensor");
    TORCH_CHECK(weight.is_cuda(), "Weight must be a CUDA tensor");
    
    bool use_custom_impl = (x.size(1) >= MIN_CHANNELS_THRESHOLD && 
                          x.size(2) >= MIN_SIZE_THRESHOLD &&
                          x.size(3) >= MIN_SIZE_THRESHOLD &&
                          weight.size(2) == KERNEL_SIZE &&
                          weight.size(3) == KERNEL_SIZE &&
                          dilation == 1 &&
                          groups == 1);
                          
    if (!use_custom_impl) {
        if (bias.has_value()) {
            return torch::conv2d(x, weight, bias.value(), 
                               {stride, stride}, 
                               {padding, padding}, 
                               {dilation, dilation}, 
                               groups);
        } else {
            return torch::conv2d(x, weight, torch::Tensor(), 
                               {stride, stride}, 
                               {padding, padding}, 
                               {dilation, dilation}, 
                               groups);
        }
    }
    
    auto batch_size = x.size(0);
    auto in_channels = x.size(1);
    auto input_height = x.size(2);
    auto input_width = x.size(3);
    auto out_channels = weight.size(0);
    
    auto output_height = (input_height + 2 * padding - KERNEL_SIZE) / stride + 1;
    auto output_width = (input_width + 2 * padding - KERNEL_SIZE) / stride + 1;
    
    auto output = torch::empty({batch_size, out_channels, output_height, output_width},
                             x.options());
    
    dim3 threads(BLOCK_SIZE, BLOCK_SIZE);
    dim3 blocks((output_width + BLOCK_SIZE - 1) / BLOCK_SIZE,
                (output_height + BLOCK_SIZE - 1) / BLOCK_SIZE,
                batch_size);
    
    conv2d_kernel_shared<<<blocks, threads>>>(
        x.data_ptr<float>(),
        weight.data_ptr<float>(),
        output.data_ptr<float>(),
        batch_size,
        in_channels,
        out_channels,
        input_height,
        input_width,
        output_height,
        output_width,
        stride,
        padding);
    
    if (bias.has_value()) {
        output.add_(bias.value().view({1, -1, 1, 1}));
    }
    
    return output;
}

PYBIND11_MODULE(TORCH_EXTENSION_NAME, m) {
    m.def("forward", &forward, "Adaptive CUDA forward function for 2D convolution");
}
Performance Metrics
Metric Value Unit Variance Samples
Analysis Rules
Rule Description
Operation / Metric Value Unit
aten::conv2d
CPU Time 541870.82 μs
Device Time 1453610.44 μs
Self CPU Time 10219.43 μs
Self Device Time 0.00 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
aten::convolution
CPU Time 531651.39 μs
Device Time 1453610.44 μs
Self CPU Time 11801.10 μs
Self Device Time 0.00 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
aten::_convolution
CPU Time 519850.29 μs
Device Time 1453610.44 μs
Self CPU Time 14589.47 μs
Self Device Time 0.00 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
aten::cudnn_convolution
CPU Time 505260.83 μs
Device Time 1453610.44 μs
Self CPU Time 149735.46 μs
Self Device Time 1453610.44 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
sm80_xmma_fprop_implicit_gemm_f32f32_f32f32_f32_nchwkcrs_nchw_tilesize256x64x8_stage3_warpsize2x2x1_g1_ffma_aligna4_alignc4_execute_kernel__5x_cudnn
CPU Time 0.00 μs
Device Time 1453607.72 μs
Self CPU Time 0.00 μs
Self Device Time 1453607.72 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
aten::zero_
CPU Time 1328179.02 μs
Device Time 501033.70 μs
Self CPU Time 13365.24 μs
Self Device Time 0.00 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
aten::fill_
CPU Time 1314815.59 μs
Device Time 501033.70 μs
Self CPU Time 17982.63 μs
Self Device Time 501033.70 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
cudaLaunchKernel
CPU Time 1296832.96 μs
Device Time 0.00 μs
Self CPU Time 1296832.96 μs
Self Device Time 0.00 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
Status: Completed
45301 warnings generated when compiling for host.
Suppressed 45327 warnings (45280 in non-user code, 47 NOLINT).
Use -header-filter=.* to display errors from all non-system headers. Use -system-headers to display errors from system headers as well.
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_1/task_63/b8_s2_adaptive_conv2d_cuda/base/base.cu:12:5 bugprone-easily-swappable-parameters
12 | const float* __restrict__ input,
| ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
13 | const float* __restrict__ weight,
| ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_1/task_63/b8_s2_adaptive_conv2d_cuda/base/base.cu:12:31: note: the first parameter in the range is 'input'
12 | const float* __restrict__ input,
| ^~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_1/task_63/b8_s2_adaptive_conv2d_cuda/base/base.cu:13:31: note: the last parameter in the range is 'weight'
13 | const float* __restrict__ weight,
| ^~~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_1/task_63/b8_s2_adaptive_conv2d_cuda/base/base.cu:15:5: warning: 3 adjacent parameters of 'conv2d_kernel_shared' of similar type ('const int') are easily swapped by mistake [bugprone-easily-swappable-parameters]
15 | const int batch_size,
| ^~~~~~~~~~~~~~~~~~~~~
16 | const int in_channels,
| ~~~~~~~~~~~~~~~~~~~~~~
17 | const int out_channels,
| ~~~~~~~~~~~~~~~~~~~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_1/task_63/b8_s2_adaptive_conv2d_cuda/base/base.cu:15:15: note: the first parameter in the range is 'batch_size'
15 | const int batch_size,
| ^~~~~~~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_1/task_63/b8_s2_adaptive_conv2d_cuda/base/base.cu:17:15: note: the last parameter in the range is 'out_channels'
17 | const int out_channels,
| ^~~~~~~~~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_1/task_63/b8_s2_adaptive_conv2d_cuda/base/base.cu:19:5: warning: 2 adjacent parameters of 'conv2d_kernel_shared' of similar type ('const int') are easily swapped by mistake [bugprone-easily-swappable-parameters]
19 | const int input_width,
| ^~~~~~~~~~~~~~~~~~~~~~
20 | const int output_height,
| ~~~~~~~~~~~~~~~~~~~~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_1/task_63/b8_s2_adaptive_conv2d_cuda/base/base.cu:19:15: note: the first parameter in the range is 'input_width'
19 | const int input_width,
| ^~~~~~~~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_1/task_63/b8_s2_adaptive_conv2d_cuda/base/base.cu:20:15: note: the last parameter in the range is 'output_height'
20 | const int output_height,
| ^~~~~~~~~~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_1/task_63/b8_s2_adaptive_conv2d_cuda/base/base.cu:21:5: warning: 3 adjacent parameters of 'conv2d_kernel_shared' of similar type ('const int') are easily swapped by mistake [bugprone-easily-swappable-parameters]
21 | const int output_width,
| ^~~~~~~~~~~~~~~~~~~~~~~
22 | const int stride,
| ~~~~~~~~~~~~~~~~~
23 | const int padding) {
| ~~~~~~~~~~~~~~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_1/task_63/b8_s2_adaptive_conv2d_cuda/base/base.cu:21:15: note: the first parameter in the range is 'output_width'
21 | const int output_width,
| ^~~~~~~~~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_1/task_63/b8_s2_adaptive_conv2d_cuda/base/base.cu:23:15: note: the last parameter in the range is 'padding'
23 | const int padding) {
| ^~~~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_1/task_63/b8_s2_adaptive_conv2d_cuda/base/base.cu:27:20: warning: narrowing conversion from 'unsigned int' to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
27 | const int tx = threadIdx.x;
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_1/task_63/b8_s2_adaptive_conv2d_cuda/base/base.cu:28:20: warning: narrowing conversion from 'unsigned int' to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
28 | const int ty = threadIdx.y;
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_1/task_63/b8_s2_adaptive_conv2d_cuda/base/base.cu:29:20: warning: narrowing conversion from 'unsigned int' to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
29 | const int bx = blockIdx.x * BLOCK_SIZE;
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_1/task_63/b8_s2_adaptive_conv2d_cuda/base/base.cu:30:20: warning: narrowing conversion from 'unsigned int' to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
30 | const int by = blockIdx.y * BLOCK_SIZE;
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_1/task_63/b8_s2_adaptive_conv2d_cuda/base/base.cu:31:19: warning: narrowing conversion from 'unsigned int' to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
31 | const int b = blockIdx.z;
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_1/task_63/b8_s2_adaptive_conv2d_cuda/base/base.cu:80:19: warning: the parameter 'x' is copied for each invocation but only used as a const reference; consider making it a const reference [performance-unnecessary-value-param]
80 | torch::Tensor x,
| ^
| const &
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_1/task_63/b8_s2_adaptive_conv2d_cuda/base/base.cu:81:19: warning: the parameter 'weight' is copied for each invocation but only used as a const reference; consider making it a const reference [performance-unnecessary-value-param]
81 | torch::Tensor weight,
| ^
| const &
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_1/task_63/b8_s2_adaptive_conv2d_cuda/base/base.cu:101:45: warning: conversion from 'std::optional<at::Tensor>' into 'at::Tensor' and back into 'std::optional<at::Tensor>', remove potentially error-prone optional dereference [bugprone-optional-value-conversion]
101 | return torch::conv2d(x, weight, bias.value(),
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_1/task_63/b8_s2_adaptive_conv2d_cuda/base/base.cu:101:50: note: remove call to 'value' to silence this warning
101 | return torch::conv2d(x, weight, bias.value(),
| ~^~~~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_1/task_63/b8_s2_adaptive_conv2d_cuda/base/base.cu:121:42: warning: performing an implicit widening conversion to type 'int64_t' (aka 'long') of a multiplication performed in type 'int' [bugprone-implicit-widening-of-multiplication-result]
121 | auto output_height = (input_height + 2 * padding - KERNEL_SIZE) / stride + 1;
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_1/task_63/b8_s2_adaptive_conv2d_cuda/base/base.cu:121:42: note: make conversion explicit to silence this warning
4 | auto output_height = (input_height + 2 * padding - KERNEL_SIZE) / stride + 1;
| ^~~~~~~~~~~
| static_cast<int64_t>( )
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_1/task_63/b8_s2_adaptive_conv2d_cuda/base/base.cu:121:42: note: perform multiplication in a wider type
121 | auto output_height = (input_height + 2 * padding - KERNEL_SIZE) / stride + 1;
| ^
| static_cast<int64_t>( )
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_1/task_63/b8_s2_adaptive_conv2d_cuda/base/base.cu:122:40: warning: performing an implicit widening conversion to type 'int64_t' (aka 'long') of a multiplication performed in type 'int' [bugprone-implicit-widening-of-multiplication-result]
122 | auto output_width = (input_width + 2 * padding - KERNEL_SIZE) / stride + 1;
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_1/task_63/b8_s2_adaptive_conv2d_cuda/base/base.cu:122:40: note: make conversion explicit to silence this warning
122 | auto output_width = (input_width + 2 * padding - KERNEL_SIZE) / stride + 1;
| ^~~~~~~~~~~
| static_cast<int64_t>( )
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_1/task_63/b8_s2_adaptive_conv2d_cuda/base/base.cu:122:40: note: perform multiplication in a wider type
122 | auto output_width = (input_width + 2 * padding - KERNEL_SIZE) / stride + 1;
| ^
| static_cast<int64_t>( )
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_1/task_63/b8_s2_adaptive_conv2d_cuda/base/base.cu:136:9: warning: narrowing conversion from 'int64_t' (aka 'long') to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
136 | batch_size,
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_1/task_63/b8_s2_adaptive_conv2d_cuda/base/base.cu:137:9: warning: narrowing conversion from 'int64_t' (aka 'long') to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
137 | in_channels,
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_1/task_63/b8_s2_adaptive_conv2d_cuda/base/base.cu:138:9: warning: narrowing conversion from 'int64_t' (aka 'long') to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
138 | out_channels,
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_1/task_63/b8_s2_adaptive_conv2d_cuda/base/base.cu:139:9: warning: narrowing conversion from 'int64_t' (aka 'long') to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
139 | input_height,
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_1/task_63/b8_s2_adaptive_conv2d_cuda/base/base.cu:140:9: warning: narrowing conversion from 'int64_t' (aka 'long') to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
140 | input_width,
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_1/task_63/b8_s2_adaptive_conv2d_cuda/base/base.cu:141:9: warning: narrowing conversion from 'int64_t' (aka 'long') to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
141 | output_height,
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_1/task_63/b8_s2_adaptive_conv2d_cuda/base/base.cu:142:9: warning: narrowing conversion from 'int64_t' (aka 'long') to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
142 | output_width,
| ^