← Back to Leaderboard

The AI CUDA Engineer 👷

63_conv_standard_2D__square_input__square_kernelconv2d_grid_stride_base

Level 1 • Task 63
import torch
import torch.nn as nn
import torch.nn.functional as F


def module_fn(
    x: torch.Tensor,
    weight: torch.Tensor,
    bias: torch.Tensor,
    stride: int,
    padding: int,
    dilation: int,
    groups: int,
) -> torch.Tensor:
    """
    Performs a standard 2D convolution operation with a square input and square kernel.

    Args:
        x (torch.Tensor): Input tensor.
        weight (torch.Tensor): Weight tensor.
        bias (torch.Tensor): Bias tensor.
        stride (int): Stride of the convolution.
        padding (int): Padding applied to the input.
        dilation (int): Dilation of the convolution.
        groups (int): Number of blocked connections from input channels to output channels.

    Returns:
        torch.Tensor: Output tensor.
    """
    return F.conv2d(
        x,
        weight,
        bias,
        stride=stride,
        padding=padding,
        dilation=dilation,
        groups=groups,
    )


class Model(nn.Module):
    """
    Performs a standard 2D convolution operation with a square input and square kernel.

    Args:
        in_channels (int): Number of channels in the input tensor.
        out_channels (int): Number of channels produced by the convolution.
        kernel_size (int): Size of the square convolution kernel.
        stride (int): Stride of the convolution.
        padding (int): Padding applied to the input.
        dilation (int): Spacing between kernel elements.
        groups (int): Number of blocked connections from input channels to output channels.
        bias (bool): If `True`, adds a learnable bias to the output.
    """

    def __init__(
        self,
        in_channels: int,
        out_channels: int,
        kernel_size: int,
        stride: int,
        padding: int,
        dilation: int,
        groups: int,
        bias: bool,
    ):
        super(Model, self).__init__()
        # Create a Conv2d layer to get the same initialization
        conv = nn.Conv2d(
            in_channels,
            out_channels,
            kernel_size=kernel_size,
            stride=stride,
            padding=padding,
            dilation=dilation,
            groups=groups,
            bias=bias,
        )
        # Copy the initialized parameters
        self.weight = nn.Parameter(conv.weight.clone())
        self.bias = nn.Parameter(conv.bias.clone()) if bias else None

        self.stride = stride
        self.padding = padding
        self.dilation = dilation
        self.groups = groups

    def forward(
        self,
        x: torch.Tensor,
        fn=module_fn,
    ) -> torch.Tensor:
        """
        Performs the 2D convolution.

        Args:
            x (torch.Tensor): Input tensor of shape (batch_size, in_channels, height, width).

        Returns:
            torch.Tensor: Output tensor of shape (batch_size, out_channels, height_out, width_out).
        """
        return fn(
            x,
            self.weight,
            self.bias,
            self.stride,
            self.padding,
            self.dilation,
            self.groups,
        )


# Constants
batch_size = 16
in_channels = 3
out_channels = 64
kernel_size = 3
width = 256
height = 256
stride = 1
padding = 0
dilation = 1
groups = 1
bias = False


def get_inputs():
    x = torch.randn(batch_size, in_channels, height, width)
    return [x]


def get_init_inputs():
    return [
        in_channels,
        out_channels,
        kernel_size,
        stride,
        padding,
        dilation,
        groups,
        bias,
    ]
import torch
import torch.nn as nn


class Model(nn.Module):
    """
    Performs a standard 2D convolution operation with a square input and square kernel.

    Args:
        in_channels (int): Number of channels in the input tensor.
        out_channels (int): Number of channels produced by the convolution.
        kernel_size (int): Size of the square convolution kernel.
        stride (int, optional): Stride of the convolution. Defaults to 1.
        padding (int, optional): Padding applied to the input. Defaults to 0.
        dilation (int, optional): Spacing between kernel elements. Defaults to 1.
        groups (int, optional): Number of blocked connections from input channels to output channels. Defaults to 1.
        bias (bool, optional): If `True`, adds a learnable bias to the output. Defaults to `False`.
    """

    def __init__(
        self,
        in_channels: int,
        out_channels: int,
        kernel_size: int,
        stride: int = 1,
        padding: int = 0,
        dilation: int = 1,
        groups: int = 1,
        bias: bool = False,
    ):
        super(Model, self).__init__()
        self.conv2d = nn.Conv2d(
            in_channels,
            out_channels,
            (kernel_size, kernel_size),
            stride=stride,
            padding=padding,
            dilation=dilation,
            groups=groups,
            bias=bias,
        )

    def forward(self, x: torch.Tensor) -> torch.Tensor:
        """
        Performs the 2D convolution.

        Args:
            x (torch.Tensor): Input tensor of shape (batch_size, in_channels, height, width).

        Returns:
            torch.Tensor: Output tensor of shape (batch_size, out_channels, height_out, width_out).
        """
        return self.conv2d(x)


# Test code
batch_size = 16
in_channels = 3
out_channels = 64
kernel_size = 3
width = 256
height = 256
stride = 1
padding = 0
dilation = 1
groups = 1
bias = False


def get_inputs():
    x = torch.randn(batch_size, in_channels, height, width)
    return [x]


def get_init_inputs():
    return [
        in_channels,
        out_channels,
        kernel_size,
        stride,
        padding,
        dilation,
        groups,
        bias,
    ]  # Provide in_channels, out_channels, kernel_size for initialization

Kernel Information

Related Kernels (Level 1, Task 63 • 63_conv_standard_2D__square_input__square_kernel)

Rank Kernel Name Runtime (ms) Speedup Native Speedup Compile
🥇 63_conv_standard_2D__square_input__square_kernel 0.23 1.00 1.68
🥇 adaptive_conv2d_cuda_base 0.23 1.00 1.68
🥇 conv2d_minimized_warp_divergence_base 0.23 1.00 1.68
🥇 adaptive_conv2d_cuda_base 0.23 1.00 1.68
5 conv2d_shared_mem_optimized_base 0.43 0.54 0.90
6 conv2d_coalesced_coalescing_base 0.85 0.27 0.45
7 conv2d_shared_mem_optimized_base 1.10 0.21 0.35
8 conv2d_shared_mem_optimized_base 1.10 0.21 0.35
8 conv2d_shared_mem_opt_base_base 1.10 0.21 0.35
10 63_conv_warp_optimized_base 1.18 0.19 0.33
11 mod_conv2d_kernel_modular_base 1.20 0.19 0.32
12 conv2d_unrolled_shared_base 1.22 0.19 0.32
13 63_conv_optimized_thread_mapping_base 1.34 0.17 0.29
14 constant_memory_optim_conv2d_edit_1 1.35 0.17 0.28
15 conv2d_shared_atomic_minimized_base 1.39 0.17 0.28
16 conv2d_grid_stride_base 1.41 0.16 0.27
17 atomic_minimized_conv2d_base_base 1.42 0.16 0.27
18 balanced_conv2d_cuda_base 1.44 0.16 0.27
19 block_size_optimization_conv2d_base 1.45 0.16 0.27
20 block_size_optimization_conv2d_edit_1 1.47 0.16 0.26
#include <torch/extension.h>
#include <cuda.h>
#include <cuda_runtime.h>

// This kernel uses grid-stride loops to handle workloads larger than the number of active threads.
// Each thread processes multiple output elements by iterating through a flattened output index space.

__global__ void conv2d_kernel(
    const float* __restrict__ input,
    const float* __restrict__ weight,
    float* __restrict__ output,
    const int batch_size,
    const int in_channels,
    const int out_channels,
    const int input_height,
    const int input_width,
    const int kernel_size,
    const int output_height,
    const int output_width,
    const int stride,
    const int padding) {

    // Total number of output elements in 4D tensor: (N, out_channels, output_height, output_width)
    int total = batch_size * out_channels * output_height * output_width;
    int idx = blockIdx.x * blockDim.x + threadIdx.x;
    int step = blockDim.x * gridDim.x;

    // Grid-stride loop: Each thread processes multiple elements if necessary
    for (int index = idx; index < total; index += step) {
        int temp = index;
        int ox = temp % output_width;
        temp /= output_width;
        int oy = temp % output_height;
        temp /= output_height;
        int oc = temp % out_channels;
        int n = temp / out_channels;

        float sum = 0.0f;
        // Convolution accumulation
        for (int ic = 0; ic < in_channels; ++ic) {
            for (int kh = 0; kh < kernel_size; ++kh) {
                int in_y = oy * stride - padding + kh;
                if (in_y < 0 || in_y >= input_height)
                    continue;
                for (int kw = 0; kw < kernel_size; ++kw) {
                    int in_x = ox * stride - padding + kw;
                    if (in_x < 0 || in_x >= input_width)
                        continue;
                    int input_idx = ((n * in_channels + ic) * input_height + in_y) * input_width + in_x;
                    int weight_idx = ((oc * in_channels + ic) * kernel_size + kh) * kernel_size + kw;
                    sum += input[input_idx] * weight[weight_idx];
                }
            }
        }
        int output_idx = ((n * out_channels + oc) * output_height + oy) * output_width + ox;
        output[output_idx] = sum;
    }
}


// Host function to launch the kernel
// This implementation supports square kernels and does not support dilation or groups other than 1.

torch::Tensor forward(
    torch::Tensor x,
    torch::Tensor weight,
    torch::optional<torch::Tensor> bias,
    int stride,
    int padding,
    int dilation,
    int groups) {

    TORCH_CHECK(x.is_cuda(), "Input must be a CUDA tensor");
    TORCH_CHECK(weight.is_cuda(), "Weight must be a CUDA tensor");
    TORCH_CHECK(dilation == 1, "Dilation other than 1 is not supported in this kernel");
    TORCH_CHECK(groups == 1, "Groups other than 1 are not supported in this kernel");

    int batch_size = x.size(0);
    int in_channels = x.size(1);
    int input_height = x.size(2);
    int input_width = x.size(3);
    int out_channels = weight.size(0);
    int kernel_size = weight.size(2); // assuming square kernel

    int output_height = (input_height + 2 * padding - kernel_size) / stride + 1;
    int output_width = (input_width + 2 * padding - kernel_size) / stride + 1;

    auto output = torch::empty({batch_size, out_channels, output_height, output_width}, x.options());
    
    int total_elements = batch_size * out_channels * output_height * output_width;
    int threads = 256;
    int blocks = (total_elements + threads - 1) / threads;

    conv2d_kernel<<<blocks, threads>>>(
        x.data_ptr<float>(),
        weight.data_ptr<float>(),
        output.data_ptr<float>(),
        batch_size,
        in_channels,
        out_channels,
        input_height,
        input_width,
        kernel_size,
        output_height,
        output_width,
        stride,
        padding);

    cudaDeviceSynchronize();

    if (bias.has_value()) {
        output.add_(bias.value().view({1, -1, 1, 1}));
    }

    return output;
}

PYBIND11_MODULE(TORCH_EXTENSION_NAME, m) {
    m.def("forward", &forward, "CUDA forward function for 2D convolution using grid-stride loops");
}
Performance Metrics
Metric Value Unit Variance Samples
Executed Ipc Active 3.440 inst/cycle 0.000 5
Executed Ipc Elapsed 3.430 inst/cycle 0.000 5
Issue Slots Busy 85.994 % 0.000 5
Issued Ipc Active 3.440 inst/cycle 0.000 5
SM Busy 85.994 % 0.000 5
Memory Throughput 147319453999.938 byte/second 28328722267525996.000 5
Mem Busy 35.312 % 0.000 5
Max Bandwidth 32.734 % 0.000 5
L1/TEX Hit Rate 79.764 % 0.000 5
L2 Hit Rate 98.802 % 0.007 5
Mem Pipes Busy 31.828 % 0.000 5
Warp Cycles Per Issued Instruction 17.580 cycle 0.000 5
Warp Cycles Per Executed Instruction 17.580 cycle 0.000 5
Avg. Active Threads Per Warp 32.000 0.000 5
Avg. Not Predicated Off Threads Per Warp 29.350 0.000 5
Max Active Clusters 0.000 cluster 0.000 5
Max Cluster Size 8.000 block 0.000 5
Overall GPU Occupancy 0.000 % 0.000 5
Cluster Occupancy 0.000 % 0.000 5
Block Limit SM 32.000 block 0.000 5
Block Limit Registers 8.000 block 0.000 5
Block Limit Shared Mem 32.000 block 0.000 5
Block Limit Warps 8.000 block 0.000 5
Theoretical Active Warps per SM 64.000 warp 0.000 5
Theoretical Occupancy 100.000 % 0.000 5
Achieved Occupancy 94.656 % 0.000 5
Achieved Active Warps Per SM 60.582 warp 0.000 5
Analysis Rules
Rule Description
INF HighPipeUtilization ALU is the highest-utilized pipeline (57.5%) based on active cycles, taking into account the rates of its different instructions. It executes integer and logic operations. It is well-utilized, but should not be a bottleneck.
INF Occupancy This kernel's theoretical occupancy is not impacted by any block limit.
Operation / Metric Value Unit
aten::to
CPU Time 256527.46 μs
Device Time 1244.82 μs
Self CPU Time 53.96 μs
Self Device Time 0.00 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
aten::_to_copy
CPU Time 256473.50 μs
Device Time 1244.82 μs
Self CPU Time 99.73 μs
Self Device Time 0.00 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
aten::empty_strided
CPU Time 254881.32 μs
Device Time 0.00 μs
Self CPU Time 104.82 μs
Self Device Time 0.00 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
cudaDeviceGetStreamPriorityRange
CPU Time 254409.86 μs
Device Time 0.00 μs
Self CPU Time 254409.86 μs
Self Device Time 0.00 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
cudaLaunchKernel
CPU Time 36866.71 μs
Device Time 27635.71 μs
Self CPU Time 36866.71 μs
Self Device Time 27635.71 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
conv2d_kernel(float const*, float const*, float*, int, int, int, int, int, int, int, int, int, int)
CPU Time 0.00 μs
Device Time 5276812.23 μs
Self CPU Time 0.00 μs
Self Device Time 5276812.23 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
cudaDeviceSynchronize
CPU Time 5526421.09 μs
Device Time 392.16 μs
Self CPU Time 5526421.09 μs
Self Device Time 392.16 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
aten::zero_
CPU Time 41044.36 μs
Device Time 290806.80 μs
Self CPU Time 8119.63 μs
Self Device Time 0.00 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
aten::fill_
CPU Time 32926.67 μs
Device Time 290806.80 μs
Self CPU Time 10891.61 μs
Self Device Time 290806.80 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
void at::native::vectorized_elementwise_kernel<4, at::native::FillFunctor<int>, at::detail::Array<char*, 1> >(int, at::native::FillFunctor<int>, at::detail::Array<char*, 1>)
CPU Time 0.00 μs
Device Time 290806.80 μs
Self CPU Time 0.00 μs
Self Device Time 290806.80 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
Status: Completed
45295 warnings generated when compiling for host.
Suppressed 45327 warnings (45280 in non-user code, 47 NOLINT).
Use -header-filter=.* to display errors from all non-system headers. Use -system-headers to display errors from system headers as well.
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_1/task_63/b7_s2_conv2d_grid_stride/base/base.cu:12:5 bugprone-easily-swappable-parameters
12 | const int batch_size,
| ^~~~~~~~~~~~~~~~~~~~~
13 | const int in_channels,
| ~~~~~~~~~~~~~~~~~~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_1/task_63/b7_s2_conv2d_grid_stride/base/base.cu:12:15: note: the first parameter in the range is 'batch_size'
12 | const int batch_size,
| ^~~~~~~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_1/task_63/b7_s2_conv2d_grid_stride/base/base.cu:13:15: note: the last parameter in the range is 'in_channels'
13 | const int in_channels,
| ^~~~~~~~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_1/task_63/b7_s2_conv2d_grid_stride/base/base.cu:14:5: warning: 2 adjacent parameters of 'conv2d_kernel' of similar type ('const int') are easily swapped by mistake [bugprone-easily-swappable-parameters]
14 | const int out_channels,
| ^~~~~~~~~~~~~~~~~~~~~~~
15 | const int input_height,
| ~~~~~~~~~~~~~~~~~~~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_1/task_63/b7_s2_conv2d_grid_stride/base/base.cu:14:15: note: the first parameter in the range is 'out_channels'
14 | const int out_channels,
| ^~~~~~~~~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_1/task_63/b7_s2_conv2d_grid_stride/base/base.cu:15:15: note: the last parameter in the range is 'input_height'
15 | const int input_height,
| ^~~~~~~~~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_1/task_63/b7_s2_conv2d_grid_stride/base/base.cu:16:5: warning: 3 adjacent parameters of 'conv2d_kernel' of similar type ('const int') are easily swapped by mistake [bugprone-easily-swappable-parameters]
16 | const int input_width,
| ^~~~~~~~~~~~~~~~~~~~~~
17 | const int kernel_size,
| ~~~~~~~~~~~~~~~~~~~~~~
18 | const int output_height,
| ~~~~~~~~~~~~~~~~~~~~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_1/task_63/b7_s2_conv2d_grid_stride/base/base.cu:16:15: note: the first parameter in the range is 'input_width'
16 | const int input_width,
| ^~~~~~~~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_1/task_63/b7_s2_conv2d_grid_stride/base/base.cu:18:15: note: the last parameter in the range is 'output_height'
18 | const int output_height,
| ^~~~~~~~~~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_1/task_63/b7_s2_conv2d_grid_stride/base/base.cu:19:5: warning: 2 adjacent parameters of 'conv2d_kernel' of similar type ('const int') are easily swapped by mistake [bugprone-easily-swappable-parameters]
19 | const int output_width,
| ^~~~~~~~~~~~~~~~~~~~~~~
20 | const int stride,
| ~~~~~~~~~~~~~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_1/task_63/b7_s2_conv2d_grid_stride/base/base.cu:19:15: note: the first parameter in the range is 'output_width'
19 | const int output_width,
| ^~~~~~~~~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_1/task_63/b7_s2_conv2d_grid_stride/base/base.cu:20:15: note: the last parameter in the range is 'stride'
20 | const int stride,
| ^~~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_1/task_63/b7_s2_conv2d_grid_stride/base/base.cu:25:15: warning: narrowing conversion from 'unsigned int' to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
25 | int idx = blockIdx.x * blockDim.x + threadIdx.x;
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_1/task_63/b7_s2_conv2d_grid_stride/base/base.cu:26:16: warning: narrowing conversion from 'unsigned int' to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
26 | int step = blockDim.x * gridDim.x;
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_1/task_63/b7_s2_conv2d_grid_stride/base/base.cu:65:19: warning: the parameter 'x' is copied for each invocation but only used as a const reference; consider making it a const reference [performance-unnecessary-value-param]
65 | torch::Tensor x,
| ^
| const &
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_1/task_63/b7_s2_conv2d_grid_stride/base/base.cu:66:19: warning: the parameter 'weight' is copied for each invocation but only used as a const reference; consider making it a const reference [performance-unnecessary-value-param]
66 | torch::Tensor weight,
| ^
| const &
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_1/task_63/b7_s2_conv2d_grid_stride/base/base.cu:69:5: warning: 3 adjacent parameters of 'forward' of similar type ('int') are easily swapped by mistake [bugprone-easily-swappable-parameters]
69 | int padding,
| ^~~~~~~~~~~~
70 | int dilation,
| ~~~~~~~~~~~~~
71 | int groups) {
| ~~~~~~~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_1/task_63/b7_s2_conv2d_grid_stride/base/base.cu:69:9: note: the first parameter in the range is 'padding'
69 | int padding,
| ^~~~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_1/task_63/b7_s2_conv2d_grid_stride/base/base.cu:71:9: note: the last parameter in the range is 'groups'
71 | int groups) {
| ^~~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_1/task_63/b7_s2_conv2d_grid_stride/base/base.cu:78:22: warning: narrowing conversion from 'int64_t' (aka 'long') to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
78 | int batch_size = x.size(0);
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_1/task_63/b7_s2_conv2d_grid_stride/base/base.cu:79:23: warning: narrowing conversion from 'int64_t' (aka 'long') to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
79 | int in_channels = x.size(1);
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_1/task_63/b7_s2_conv2d_grid_stride/base/base.cu:80:24: warning: narrowing conversion from 'int64_t' (aka 'long') to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
80 | int input_height = x.size(2);
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_1/task_63/b7_s2_conv2d_grid_stride/base/base.cu:81:23: warning: narrowing conversion from 'int64_t' (aka 'long') to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
81 | int input_width = x.size(3);
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_1/task_63/b7_s2_conv2d_grid_stride/base/base.cu:82:24: warning: narrowing conversion from 'int64_t' (aka 'long') to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
82 | int out_channels = weight.size(0);
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_1/task_63/b7_s2_conv2d_grid_stride/base/base.cu:83:23: warning: narrowing conversion from 'int64_t' (aka 'long') to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
83 | int kernel_size = weight.size(2); // assuming square kernel
| ^