← Back to Leaderboard

The AI CUDA Engineer 👷

12_Gemm_Multiply_LeakyReLUgemm_tiled_shared_base

Level 2 • Task 12
import torch
import torch.nn as nn
import torch.nn.functional as F


def module_fn(
    x: torch.Tensor,
    multiplier: float,
    negative_slope: float,
    weight: torch.Tensor,
    bias: torch.Tensor,
) -> torch.Tensor:
    """
    Applies linear transformation, multiplies by scalar, and applies LeakyReLU.

    Args:
        x (torch.Tensor): Input tensor of shape (batch_size, in_features)
        multiplier (float): Scalar multiplier
        negative_slope (float): Negative slope for LeakyReLU
        weight (torch.Tensor): Weight matrix of shape (out_features, in_features)
        bias (torch.Tensor): Bias vector of shape (out_features)

    Returns:
        torch.Tensor: Output tensor of shape (batch_size, out_features)
    """
    x = F.linear(x, weight, bias)
    x = x * multiplier
    x = F.leaky_relu(x, negative_slope=negative_slope)
    return x


class Model(nn.Module):
    """
    Simple model that performs a Gemm, multiplies the result, and applies LeakyReLU.
    """

    def __init__(self, in_features, out_features, multiplier, negative_slope):
        super(Model, self).__init__()
        gemm = nn.Linear(in_features, out_features)
        self.weight = gemm.weight
        self.bias = gemm.bias

    def forward(self, x, fn=module_fn):
        return fn(x, multiplier, negative_slope, self.weight, self.bias)


batch_size = 128
in_features = 1024
out_features = 512
multiplier = 2.0
negative_slope = 0.1


def get_inputs():
    return [torch.randn(batch_size, in_features)]


def get_init_inputs():
    return [in_features, out_features, multiplier, negative_slope]
import torch
import torch.nn as nn

class Model(nn.Module):
    """
    Simple model that performs a Gemm, multiplies the result, and applies LeakyReLU.
    """
    def __init__(self, in_features, out_features, multiplier, negative_slope):
        super(Model, self).__init__()
        self.gemm = nn.Linear(in_features, out_features)
        self.multiplier = multiplier
        self.leaky_relu = nn.LeakyReLU(negative_slope)

    def forward(self, x):
        x = self.gemm(x)
        x = x * self.multiplier
        x = self.leaky_relu(x)
        return x

batch_size = 128
in_features = 1024
out_features = 512
multiplier = 2.0
negative_slope = 0.1

def get_inputs():
    return [torch.randn(batch_size, in_features)]

def get_init_inputs():
    return [in_features, out_features, multiplier, negative_slope]

Kernel Information

Related Kernels (Level 2, Task 12 • 12_Gemm_Multiply_LeakyReLU)

Rank Kernel Name Runtime (ms) Speedup Native Speedup Compile
🥇 12_gemm_warp_primitives_base 0.03 1.30 2.32
🥈 12_gemm_ldg_optimization_base 0.04 1.18 2.12
🥈 12_gemm_warp_vec4_edit_1_base_edit_1 0.04 1.18 2.12
🥈 12_gemm_ldg_optimization_edit_1 0.04 1.18 2.12
5 12_gemm_warp_vec4_edit_1_base_base 0.04 1.04 1.86
6 gemm_tiled_grid_edit_1 0.05 0.83 1.49
7 12_gemm_constant_memory_edit_1 0.05 0.80 1.43
8 gemm_unrolled_base 0.05 0.77 1.38
8 gemm_unrolled_edit_1 0.05 0.77 1.38
8 12_gemm_constant_memory_base 0.05 0.77 1.38
11 gemm_tiled_grid_block_32_base 0.07 0.60 1.08
12 gemm_tiled_grid_base 0.07 0.59 1.06
12 gemm_tiled_shared_base 0.07 0.59 1.06
12 gemm_tiled_grid_block_32_edit_1 0.07 0.59 1.06
15 12_gemm_tiled_coalesced_edit_1 0.07 0.58 1.05
16 gemm_tiled_streamed_base 0.07 0.56 1.00
17 optimized_gemm_leakyrelu_base 0.07 0.55 0.99
17 atomic_optimization_gemm_edit_1 0.07 0.55 0.99
17 optimized_gemm_leakyrelu_edit_1 0.07 0.55 0.99
20 optimized_thread_block_indexing_gemm_base 0.08 0.51 0.91
#include <torch/extension.h>
#include <cuda.h>
#include <cuda_runtime.h>

#define BLOCK_SIZE 16

// Efficient CUDA kernel that performs GEMM using shared memory tiling with transposed weight load
// and fuses bias addition, scaling, and LeakyReLU activation.
__global__ void gemm_tiled_shared_kernel(
    const float* __restrict__ x,
    const float* __restrict__ weight,
    const float* __restrict__ bias,
    float* __restrict__ output,
    const int batch_size,
    const int in_features,
    const int out_features,
    const float multiplier,
    const float negative_slope
) {
    // Calculate global row and column indices
    int row = blockIdx.x * BLOCK_SIZE + threadIdx.x;
    int col = blockIdx.y * BLOCK_SIZE + threadIdx.y;

    float sum = 0.0f;

    // Shared memory tiles for x and transposed weight
    __shared__ float s_x[BLOCK_SIZE][BLOCK_SIZE];
    __shared__ float s_w[BLOCK_SIZE][BLOCK_SIZE];

    // Number of tiles needed along the in_features dimension
    const int numTiles = (in_features + BLOCK_SIZE - 1) / BLOCK_SIZE;

    for (int t = 0; t < numTiles; t++) {
        int tiled_index = t * BLOCK_SIZE;

        // Load tile from x into shared memory
        if (row < batch_size && (tiled_index + threadIdx.y) < in_features)
            s_x[threadIdx.x][threadIdx.y] = x[row * in_features + tiled_index + threadIdx.y];
        else
            s_x[threadIdx.x][threadIdx.y] = 0.0f;

        // Load tile from weight and transpose it for better coalescing
        // weight is stored in row-major with each row corresponding to an output feature
        if (col < out_features && (tiled_index + threadIdx.x) < in_features)
            s_w[threadIdx.y][threadIdx.x] = weight[col * in_features + tiled_index + threadIdx.x];
        else
            s_w[threadIdx.y][threadIdx.x] = 0.0f;

        __syncthreads();

        // Compute partial product for this tile
        #pragma unroll
        for (int k = 0; k < BLOCK_SIZE; k++) {
            sum += s_x[threadIdx.x][k] * s_w[threadIdx.y][k];
        }

        __syncthreads();
    }

    // Write the result back to global memory with bias addition, scaling and LeakyReLU
    if (row < batch_size && col < out_features) {
        sum = (sum + bias[col]) * multiplier;
        output[row * out_features + col] = (sum > 0.0f) ? sum : sum * negative_slope;
    }
}

// Host function to launch the kernel
torch::Tensor gemm_tiled_shared_forward(
    torch::Tensor x,
    float multiplier,
    float negative_slope,
    torch::Tensor weight,
    torch::Tensor bias
) {
    TORCH_CHECK(x.is_cuda(), "x must be a CUDA tensor");
    TORCH_CHECK(weight.is_cuda(), "weight must be a CUDA tensor");
    TORCH_CHECK(bias.is_cuda(), "bias must be a CUDA tensor");

    const int batch_size = x.size(0);
    const int in_features = x.size(1);
    const int out_features = weight.size(0);

    TORCH_CHECK(weight.size(1) == in_features, "Weight in_features must match x in_features");
    TORCH_CHECK(bias.size(0) == out_features, "Bias size must match weight out_features");

    auto output = torch::zeros({batch_size, out_features}, x.options());

    dim3 block(BLOCK_SIZE, BLOCK_SIZE);
    dim3 grid((batch_size + BLOCK_SIZE - 1) / BLOCK_SIZE,
              (out_features + BLOCK_SIZE - 1) / BLOCK_SIZE);

    gemm_tiled_shared_kernel<<<grid, block>>>(
        x.data_ptr<float>(),
        weight.data_ptr<float>(),
        bias.data_ptr<float>(),
        output.data_ptr<float>(),
        batch_size,
        in_features,
        out_features,
        multiplier,
        negative_slope
    );

    return output;
}

PYBIND11_MODULE(TORCH_EXTENSION_NAME, m) {
    m.def("forward", &gemm_tiled_shared_forward, "Efficient GEMM with shared memory tiling, bias, scaling and LeakyReLU activation");
}
Performance Metrics
Metric Value Unit Variance Samples
Executed Ipc Active 0.414 inst/cycle 0.000 5
Executed Ipc Elapsed 0.380 inst/cycle 0.000 5
Issue Slots Busy 10.376 % 0.001 5
Issued Ipc Active 0.416 inst/cycle 0.000 5
SM Busy 10.376 % 0.001 5
Memory Throughput 33592403040.278 byte/second 13054593029037804.000 5
Mem Busy 79.820 % 0.071 5
Max Bandwidth 23.660 % 0.007 5
L1/TEX Hit Rate 61.508 % 0.000 5
L2 Hit Rate 86.864 % 3.760 5
Mem Pipes Busy 9.642 % 0.001 5
Warp Cycles Per Issued Instruction 37.036 cycle 0.010 5
Warp Cycles Per Executed Instruction 37.108 cycle 0.010 5
Avg. Active Threads Per Warp 32.000 0.000 5
Avg. Not Predicated Off Threads Per Warp 31.960 0.000 5
Max Active Clusters 0.000 cluster 0.000 5
Max Cluster Size 8.000 block 0.000 5
Overall GPU Occupancy 0.000 % 0.000 5
Cluster Occupancy 0.000 % 0.000 5
Block Limit SM 32.000 block 0.000 5
Block Limit Registers 8.000 block 0.000 5
Block Limit Shared Mem 21.000 block 0.000 5
Block Limit Warps 8.000 block 0.000 5
Theoretical Active Warps per SM 64.000 warp 0.000 5
Theoretical Occupancy 100.000 % 0.000 5
Achieved Occupancy 24.196 % 0.001 5
Achieved Active Warps Per SM 15.486 warp 0.000 5
Analysis Rules
Rule Description
WRN HighPipeUtilization All compute pipelines are under-utilized. Either this kernel is very small or it doesn't issue enough warps per scheduler. Check the Launch Statistics and Scheduler Statistics sections for further details.
INF CPIStall Check the Warp Stall Sampling (All Cycles) table for the top stall locations in your source based on sampling data. The Kernel Profiling Guide (https://docs.nvidia.com/nsight-compute/ProfilingGuide/index.html#metrics-reference) provides more details on each stall reason.
WRN Occupancy This kernel's theoretical occupancy is not impacted by any block limit. The difference between calculated theoretical (100.0%) and measured achieved occupancy (24.2%) can be the result of warp scheduling overheads or workload imbalances during the kernel execution. Load imbalances can occur between warps within a block as well as across blocks of the same kernel. See the CUDA Best Practices Guide (https://docs.nvidia.com/cuda/cuda-c-best-practices-guide/index.html#occupancy) for more details on optimizing occupancy.
Operation / Metric Value Unit
aten::to
CPU Time 19952077.73 μs
Device Time 156.42 μs
Self CPU Time 80.55 μs
Self Device Time 0.00 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
aten::_to_copy
CPU Time 19951997.17 μs
Device Time 156.42 μs
Self CPU Time 160.48 μs
Self Device Time 0.00 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
aten::empty_strided
CPU Time 19951331.43 μs
Device Time 0.00 μs
Self CPU Time 160.30 μs
Self Device Time 0.00 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
cudaDeviceGetStreamPriorityRange
CPU Time 19949343.94 μs
Device Time 0.00 μs
Self CPU Time 19949343.94 μs
Self Device Time 0.00 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
aten::zero_
CPU Time 7173047.69 μs
Device Time 4722504.95 μs
Self CPU Time 196056.35 μs
Self Device Time 0.00 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
aten::fill_
CPU Time 6976993.12 μs
Device Time 4722504.95 μs
Self CPU Time 243667.53 μs
Self Device Time 4722427.67 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
cudaLaunchKernel
CPU Time 7003245.69 μs
Device Time 205754.91 μs
Self CPU Time 7003245.69 μs
Self Device Time 205754.91 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
gemm_tiled_shared_kernel(float const*, float const*, float const*, float*, int, int, int, float, float)
CPU Time 0.00 μs
Device Time 3848874.33 μs
Self CPU Time 0.00 μs
Self Device Time 3848874.33 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
void at::native::vectorized_elementwise_kernel<4, at::native::FillFunctor<int>, at::detail::Array<char*, 1> >(int, at::native::FillFunctor<int>, at::detail::Array<char*, 1>)
CPU Time 0.00 μs
Device Time 4638400.17 μs
Self CPU Time 0.00 μs
Self Device Time 4638400.17 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
Status: Completed
45288 warnings generated when compiling for host.
Suppressed 45325 warnings (45278 in non-user code, 47 NOLINT).
Use -header-filter=.* to display errors from all non-system headers. Use -system-headers to display errors from system headers as well.
/home/robert_sakana_ai/llm_cuda/experiments/20250208_optimize_b5_s4_e1_sweep/level_2/task_12/b4_s3_gemm_tiled_shared/base/base.cu:10:5 bugprone-easily-swappable-parameters
10 | const float* __restrict__ x,
| ^~~~~~~~~~~~~~~~~~~~~~~~~~~~
11 | const float* __restrict__ weight,
| ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
12 | const float* __restrict__ bias,
| ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250208_optimize_b5_s4_e1_sweep/level_2/task_12/b4_s3_gemm_tiled_shared/base/base.cu:10:31: note: the first parameter in the range is 'x'
10 | const float* __restrict__ x,
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250208_optimize_b5_s4_e1_sweep/level_2/task_12/b4_s3_gemm_tiled_shared/base/base.cu:12:31: note: the last parameter in the range is 'bias'
12 | const float* __restrict__ bias,
| ^~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250208_optimize_b5_s4_e1_sweep/level_2/task_12/b4_s3_gemm_tiled_shared/base/base.cu:16:5: warning: 2 adjacent parameters of 'gemm_tiled_shared_kernel' of convertible types are easily swapped by mistake [bugprone-easily-swappable-parameters]
16 | const int out_features,
| ^~~~~~~~~~~~~~~~~~~~~~~
17 | const float multiplier,
| ~~~~~~~~~~~~~~~~~~~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250208_optimize_b5_s4_e1_sweep/level_2/task_12/b4_s3_gemm_tiled_shared/base/base.cu:16:15: note: the first parameter in the range is 'out_features'
16 | const int out_features,
| ^~~~~~~~~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250208_optimize_b5_s4_e1_sweep/level_2/task_12/b4_s3_gemm_tiled_shared/base/base.cu:17:17: note: the last parameter in the range is 'multiplier'
17 | const float multiplier,
| ^~~~~~~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250208_optimize_b5_s4_e1_sweep/level_2/task_12/b4_s3_gemm_tiled_shared/base/base.cu:17:5: note: 'const int' and 'const float' may be implicitly converted: 'const int' (as 'int') -> 'const float' (as 'float'), 'const float' (as 'float') -> 'const int' (as 'int')
17 | const float multiplier,
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250208_optimize_b5_s4_e1_sweep/level_2/task_12/b4_s3_gemm_tiled_shared/base/base.cu:21:15: warning: narrowing conversion from 'unsigned int' to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
21 | int row = blockIdx.x * BLOCK_SIZE + threadIdx.x;
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250208_optimize_b5_s4_e1_sweep/level_2/task_12/b4_s3_gemm_tiled_shared/base/base.cu:22:15: warning: narrowing conversion from 'unsigned int' to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
22 | int col = blockIdx.y * BLOCK_SIZE + threadIdx.y;
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250208_optimize_b5_s4_e1_sweep/level_2/task_12/b4_s3_gemm_tiled_shared/base/base.cu:69:19: warning: the parameter 'x' is copied for each invocation but only used as a const reference; consider making it a const reference [performance-unnecessary-value-param]
69 | torch::Tensor x,
| ^
| const &
/home/robert_sakana_ai/llm_cuda/experiments/20250208_optimize_b5_s4_e1_sweep/level_2/task_12/b4_s3_gemm_tiled_shared/base/base.cu:72:19: warning: the parameter 'weight' is copied for each invocation but only used as a const reference; consider making it a const reference [performance-unnecessary-value-param]
72 | torch::Tensor weight,
| ^
| const &
/home/robert_sakana_ai/llm_cuda/experiments/20250208_optimize_b5_s4_e1_sweep/level_2/task_12/b4_s3_gemm_tiled_shared/base/base.cu:73:19: warning: the parameter 'bias' is copied for each invocation but only used as a const reference; consider making it a const reference [performance-unnecessary-value-param]
73 | torch::Tensor bias
| ^
| const &
/home/robert_sakana_ai/llm_cuda/experiments/20250208_optimize_b5_s4_e1_sweep/level_2/task_12/b4_s3_gemm_tiled_shared/base/base.cu:79:28: warning: narrowing conversion from 'int64_t' (aka 'long') to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
79 | const int batch_size = x.size(0);
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250208_optimize_b5_s4_e1_sweep/level_2/task_12/b4_s3_gemm_tiled_shared/base/base.cu:80:29: warning: narrowing conversion from 'int64_t' (aka 'long') to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
80 | const int in_features = x.size(1);
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250208_optimize_b5_s4_e1_sweep/level_2/task_12/b4_s3_gemm_tiled_shared/base/base.cu:81:30: warning: narrowing conversion from 'int64_t' (aka 'long') to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
81 | const int out_features = weight.size(0);
| ^