← Back to Leaderboard

The AI CUDA Engineer 👷

12_Gemm_Multiply_LeakyReLUgemm_unrolled_edit_1

Level 2 • Task 12
import torch
import torch.nn as nn
import torch.nn.functional as F


def module_fn(
    x: torch.Tensor,
    multiplier: float,
    negative_slope: float,
    weight: torch.Tensor,
    bias: torch.Tensor,
) -> torch.Tensor:
    """
    Applies linear transformation, multiplies by scalar, and applies LeakyReLU.

    Args:
        x (torch.Tensor): Input tensor of shape (batch_size, in_features)
        multiplier (float): Scalar multiplier
        negative_slope (float): Negative slope for LeakyReLU
        weight (torch.Tensor): Weight matrix of shape (out_features, in_features)
        bias (torch.Tensor): Bias vector of shape (out_features)

    Returns:
        torch.Tensor: Output tensor of shape (batch_size, out_features)
    """
    x = F.linear(x, weight, bias)
    x = x * multiplier
    x = F.leaky_relu(x, negative_slope=negative_slope)
    return x


class Model(nn.Module):
    """
    Simple model that performs a Gemm, multiplies the result, and applies LeakyReLU.
    """

    def __init__(self, in_features, out_features, multiplier, negative_slope):
        super(Model, self).__init__()
        gemm = nn.Linear(in_features, out_features)
        self.weight = gemm.weight
        self.bias = gemm.bias

    def forward(self, x, fn=module_fn):
        return fn(x, multiplier, negative_slope, self.weight, self.bias)


batch_size = 128
in_features = 1024
out_features = 512
multiplier = 2.0
negative_slope = 0.1


def get_inputs():
    return [torch.randn(batch_size, in_features)]


def get_init_inputs():
    return [in_features, out_features, multiplier, negative_slope]
import torch
import torch.nn as nn

class Model(nn.Module):
    """
    Simple model that performs a Gemm, multiplies the result, and applies LeakyReLU.
    """
    def __init__(self, in_features, out_features, multiplier, negative_slope):
        super(Model, self).__init__()
        self.gemm = nn.Linear(in_features, out_features)
        self.multiplier = multiplier
        self.leaky_relu = nn.LeakyReLU(negative_slope)

    def forward(self, x):
        x = self.gemm(x)
        x = x * self.multiplier
        x = self.leaky_relu(x)
        return x

batch_size = 128
in_features = 1024
out_features = 512
multiplier = 2.0
negative_slope = 0.1

def get_inputs():
    return [torch.randn(batch_size, in_features)]

def get_init_inputs():
    return [in_features, out_features, multiplier, negative_slope]

Kernel Information

Related Kernels (Level 2, Task 12 • 12_Gemm_Multiply_LeakyReLU)

Rank Kernel Name Runtime (ms) Speedup Native Speedup Compile
🥇 12_gemm_warp_primitives_base 0.03 1.30 2.32
🥈 12_gemm_ldg_optimization_base 0.04 1.18 2.12
🥈 12_gemm_warp_vec4_edit_1_base_edit_1 0.04 1.18 2.12
🥈 12_gemm_ldg_optimization_edit_1 0.04 1.18 2.12
5 12_gemm_warp_vec4_edit_1_base_base 0.04 1.04 1.86
6 gemm_tiled_grid_edit_1 0.05 0.83 1.49
7 12_gemm_constant_memory_edit_1 0.05 0.80 1.43
8 gemm_unrolled_base 0.05 0.77 1.38
8 gemm_unrolled_edit_1 0.05 0.77 1.38
8 12_gemm_constant_memory_base 0.05 0.77 1.38
11 gemm_tiled_grid_block_32_base 0.07 0.60 1.08
12 gemm_tiled_grid_base 0.07 0.59 1.06
12 gemm_tiled_shared_base 0.07 0.59 1.06
12 gemm_tiled_grid_block_32_edit_1 0.07 0.59 1.06
15 12_gemm_tiled_coalesced_edit_1 0.07 0.58 1.05
16 gemm_tiled_streamed_base 0.07 0.56 1.00
17 optimized_gemm_leakyrelu_base 0.07 0.55 0.99
17 atomic_optimization_gemm_edit_1 0.07 0.55 0.99
17 optimized_gemm_leakyrelu_edit_1 0.07 0.55 0.99
20 optimized_thread_block_indexing_gemm_base 0.08 0.51 0.91
#include <torch/extension.h>
#include <cuda.h>
#include <cuda_runtime.h>

#define BLOCK_SIZE 16

// CUDA kernel implementing GEMM with shared memory tiling and explicit loop unrolling
__global__ void gemm_unrolled_kernel(
    const float* __restrict__ x,       // Input: [batch_size x in_features]
    const float* __restrict__ weight,  // Weight: [out_features x in_features]
    const float* __restrict__ bias,    // Bias: [out_features]
    float* __restrict__ output,        // Output: [batch_size x out_features]
    const int batch_size,
    const int in_features,
    const int out_features,
    const float multiplier,
    const float negative_slope
) {
    // Calculate global row and column indices
    int row = blockIdx.x * BLOCK_SIZE + threadIdx.x;
    int col = blockIdx.y * BLOCK_SIZE + threadIdx.y;
    float sum = 0.0f;

    // Shared memory tiles for x and weight, with added padding to avoid bank conflicts
    __shared__ float s_x[BLOCK_SIZE][BLOCK_SIZE + 1];
    __shared__ float s_w[BLOCK_SIZE][BLOCK_SIZE + 1];

    // Determine the number of tiles needed along the in_features dimension
    int numTiles = (in_features + BLOCK_SIZE - 1) / BLOCK_SIZE;

    // Unroll the tiling loop to reduce loop overhead
    #pragma unroll
    for (int t = 0; t < numTiles; t++) {
        int tiled_index = t * BLOCK_SIZE;

        // Load a tile from input x into shared memory, use __ldg for potential cache load hints
        if (row < batch_size && (tiled_index + threadIdx.y) < in_features) {
            s_x[threadIdx.x][threadIdx.y] = __ldg(&x[row * in_features + tiled_index + threadIdx.y]);
        } else {
            s_x[threadIdx.x][threadIdx.y] = 0.0f;
        }

        // Load a tile from weight, transpose it for better coalescing
        if (col < out_features && (tiled_index + threadIdx.x) < in_features) {
            s_w[threadIdx.y][threadIdx.x] = __ldg(&weight[col * in_features + tiled_index + threadIdx.x]);
        } else {
            s_w[threadIdx.y][threadIdx.x] = 0.0f;
        }

        __syncthreads();

        // Unroll the inner loop fully given the BLOCK_SIZE is known at compile time
        #pragma unroll
        for (int k = 0; k < BLOCK_SIZE; k++) {
            sum = __fmaf_rn(s_x[threadIdx.x][k], s_w[threadIdx.y][k], sum);
        }

        __syncthreads();
    }

    // Write the computed value to the output, fusing bias addition, scaling and LeakyReLU
    if (row < batch_size && col < out_features) {
        float result = (sum + bias[col]) * multiplier;
        result = (result > 0.0f) ? result : result * negative_slope;
        output[row * out_features + col] = result;
    }
}

// Host function to set up kernel execution
torch::Tensor module_fn_forward(
    torch::Tensor x,
    float multiplier,
    float negative_slope,
    torch::Tensor weight,
    torch::Tensor bias
) {
    TORCH_CHECK(x.device().is_cuda(), "x must be a CUDA tensor");
    TORCH_CHECK(weight.device().is_cuda(), "weight must be a CUDA tensor");
    TORCH_CHECK(bias.device().is_cuda(), "bias must be a CUDA tensor");

    const int batch_size = x.size(0);
    const int in_features = x.size(1);
    const int out_features = weight.size(0);

    TORCH_CHECK(weight.size(1) == in_features, "Weight in_features must match x in_features");
    TORCH_CHECK(bias.size(0) == out_features, "Bias size must match weight out_features");

    auto output = torch::zeros({batch_size, out_features}, x.options());

    dim3 block(BLOCK_SIZE, BLOCK_SIZE);
    dim3 grid(
        (batch_size + BLOCK_SIZE - 1) / BLOCK_SIZE,
        (out_features + BLOCK_SIZE - 1) / BLOCK_SIZE
    );

    gemm_unrolled_kernel<<<grid, block>>>(
        x.data_ptr<float>(),
        weight.data_ptr<float>(),
        bias.data_ptr<float>(),
        output.data_ptr<float>(),
        batch_size,
        in_features,
        out_features,
        multiplier,
        negative_slope
    );

    return output;
}

PYBIND11_MODULE(TORCH_EXTENSION_NAME, m) {
    m.def("forward", &module_fn_forward, "GEMM forward CUDA kernel with explicit loop unrolling");
}
Performance Metrics
Metric Value Unit Variance Samples
Executed Ipc Active 0.882 inst/cycle 0.000 5
Executed Ipc Elapsed 0.838 inst/cycle 0.000 5
Issue Slots Busy 22.058 % 0.006 5
Issued Ipc Active 0.882 inst/cycle 0.000 5
SM Busy 24.670 % 0.007 5
Memory Throughput 48859469332.602 byte/second 40471317343999936.000 5
Mem Busy 63.874 % 0.072 5
Max Bandwidth 43.880 % 0.035 5
L1/TEX Hit Rate 61.502 % 0.000 5
L2 Hit Rate 86.664 % 2.742 5
Mem Pipes Busy 42.016 % 0.031 5
Warp Cycles Per Issued Instruction 17.554 cycle 0.006 5
Warp Cycles Per Executed Instruction 17.576 cycle 0.006 5
Avg. Active Threads Per Warp 32.000 0.000 5
Avg. Not Predicated Off Threads Per Warp 31.980 0.000 5
Max Active Clusters 0.000 cluster 0.000 5
Max Cluster Size 8.000 block 0.000 5
Overall GPU Occupancy 0.000 % 0.000 5
Cluster Occupancy 0.000 % 0.000 5
Block Limit SM 32.000 block 0.000 5
Block Limit Registers 8.000 block 0.000 5
Block Limit Shared Mem 20.000 block 0.000 5
Block Limit Warps 8.000 block 0.000 5
Theoretical Active Warps per SM 64.000 warp 0.000 5
Theoretical Occupancy 100.000 % 0.000 5
Achieved Occupancy 24.164 % 0.000 5
Achieved Active Warps Per SM 15.464 warp 0.000 5
Analysis Rules
Rule Description
WRN HighPipeUtilization All compute pipelines are under-utilized. Either this kernel is very small or it doesn't issue enough warps per scheduler. Check the Launch Statistics and Scheduler Statistics sections for further details.
INF CPIStall Check the Warp Stall Sampling (All Cycles) table for the top stall locations in your source based on sampling data. The Kernel Profiling Guide (https://docs.nvidia.com/nsight-compute/ProfilingGuide/index.html#metrics-reference) provides more details on each stall reason.
WRN Occupancy This kernel's theoretical occupancy is not impacted by any block limit. The difference between calculated theoretical (100.0%) and measured achieved occupancy (24.2%) can be the result of warp scheduling overheads or workload imbalances during the kernel execution. Load imbalances can occur between warps within a block as well as across blocks of the same kernel. See the CUDA Best Practices Guide (https://docs.nvidia.com/cuda/cuda-c-best-practices-guide/index.html#occupancy) for more details on optimizing occupancy.
Operation / Metric Value Unit
aten::to
CPU Time 908693.64 μs
Device Time 144.99 μs
Self CPU Time 75.16 μs
Self Device Time 0.00 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
aten::zeros
CPU Time 4687048.86 μs
Device Time 95887.54 μs
Self CPU Time 107597.09 μs
Self Device Time 0.00 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
aten::zero_
CPU Time 7000562.14 μs
Device Time 5336089.84 μs
Self CPU Time 226670.34 μs
Self Device Time 0.00 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
aten::fill_
CPU Time 6773894.03 μs
Device Time 5336089.84 μs
Self CPU Time 308820.89 μs
Self Device Time 5336089.84 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
cudaLaunchKernel
CPU Time 6776227.46 μs
Device Time 1838.98 μs
Self CPU Time 6776227.46 μs
Self Device Time 1838.98 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
gemm_unrolled_kernel(float const*, float const*, float const*, float*, int, int, int, float, float)
CPU Time 0.00 μs
Device Time 3232981.45 μs
Self CPU Time 0.00 μs
Self Device Time 3232981.45 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
cudaEventRecord
CPU Time 168226.95 μs
Device Time 230597.60 μs
Self CPU Time 168226.95 μs
Self Device Time 230597.60 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
void at::native::vectorized_elementwise_kernel<4, at::native::FillFunctor<int>, at::detail::Array<char*, 1> >(int, at::native::FillFunctor<int>, at::detail::Array<char*, 1>)
CPU Time 0.00 μs
Device Time 5240202.30 μs
Self CPU Time 0.00 μs
Self Device Time 5240202.30 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
Status: Completed
45288 warnings generated when compiling for host.
Suppressed 45325 warnings (45278 in non-user code, 47 NOLINT).
Use -header-filter=.* to display errors from all non-system headers. Use -system-headers to display errors from system headers as well.
/home/robert_sakana_ai/llm_cuda/experiments/20250208_optimize_b5_s4_e1_sweep/level_2/task_12/b5_s0_gemm_unrolled/edit_1/edit_1.cu:9:5 bugprone-easily-swappable-parameters
9 | const float* __restrict__ x, // Input: [batch_size x in_features]
| ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
10 | const float* __restrict__ weight, // Weight: [out_features x in_features]
| ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
11 | const float* __restrict__ bias, // Bias: [out_features]
| ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250208_optimize_b5_s4_e1_sweep/level_2/task_12/b5_s0_gemm_unrolled/edit_1/edit_1.cu:9:31: note: the first parameter in the range is 'x'
9 | const float* __restrict__ x, // Input: [batch_size x in_features]
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250208_optimize_b5_s4_e1_sweep/level_2/task_12/b5_s0_gemm_unrolled/edit_1/edit_1.cu:11:31: note: the last parameter in the range is 'bias'
11 | const float* __restrict__ bias, // Bias: [out_features]
| ^~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250208_optimize_b5_s4_e1_sweep/level_2/task_12/b5_s0_gemm_unrolled/edit_1/edit_1.cu:15:5: warning: 3 adjacent parameters of 'gemm_unrolled_kernel' of convertible types are easily swapped by mistake [bugprone-easily-swappable-parameters]
15 | const int out_features,
| ^~~~~~~~~~~~~~~~~~~~~~~
16 | const float multiplier,
| ~~~~~~~~~~~~~~~~~~~~~~~
17 | const float negative_slope
| ~~~~~~~~~~~~~~~~~~~~~~~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250208_optimize_b5_s4_e1_sweep/level_2/task_12/b5_s0_gemm_unrolled/edit_1/edit_1.cu:15:15: note: the first parameter in the range is 'out_features'
15 | const int out_features,
| ^~~~~~~~~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250208_optimize_b5_s4_e1_sweep/level_2/task_12/b5_s0_gemm_unrolled/edit_1/edit_1.cu:17:17: note: the last parameter in the range is 'negative_slope'
17 | const float negative_slope
| ^~~~~~~~~~~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250208_optimize_b5_s4_e1_sweep/level_2/task_12/b5_s0_gemm_unrolled/edit_1/edit_1.cu:16:5: note: 'const int' and 'const float' may be implicitly converted: 'const int' (as 'int') -> 'const float' (as 'float'), 'const float' (as 'float') -> 'const int' (as 'int')
16 | const float multiplier,
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250208_optimize_b5_s4_e1_sweep/level_2/task_12/b5_s0_gemm_unrolled/edit_1/edit_1.cu:20:15: warning: narrowing conversion from 'unsigned int' to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
20 | int row = blockIdx.x * BLOCK_SIZE + threadIdx.x;
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250208_optimize_b5_s4_e1_sweep/level_2/task_12/b5_s0_gemm_unrolled/edit_1/edit_1.cu:21:15: warning: narrowing conversion from 'unsigned int' to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
21 | int col = blockIdx.y * BLOCK_SIZE + threadIdx.y;
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250208_optimize_b5_s4_e1_sweep/level_2/task_12/b5_s0_gemm_unrolled/edit_1/edit_1.cu:71:19: warning: the parameter 'x' is copied for each invocation but only used as a const reference; consider making it a const reference [performance-unnecessary-value-param]
71 | torch::Tensor x,
| ^
| const &
/home/robert_sakana_ai/llm_cuda/experiments/20250208_optimize_b5_s4_e1_sweep/level_2/task_12/b5_s0_gemm_unrolled/edit_1/edit_1.cu:74:19: warning: the parameter 'weight' is copied for each invocation but only used as a const reference; consider making it a const reference [performance-unnecessary-value-param]
74 | torch::Tensor weight,
| ^
| const &
/home/robert_sakana_ai/llm_cuda/experiments/20250208_optimize_b5_s4_e1_sweep/level_2/task_12/b5_s0_gemm_unrolled/edit_1/edit_1.cu:75:19: warning: the parameter 'bias' is copied for each invocation but only used as a const reference; consider making it a const reference [performance-unnecessary-value-param]
75 | torch::Tensor bias
| ^
| const &
/home/robert_sakana_ai/llm_cuda/experiments/20250208_optimize_b5_s4_e1_sweep/level_2/task_12/b5_s0_gemm_unrolled/edit_1/edit_1.cu:81:28: warning: narrowing conversion from 'int64_t' (aka 'long') to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
81 | const int batch_size = x.size(0);
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250208_optimize_b5_s4_e1_sweep/level_2/task_12/b5_s0_gemm_unrolled/edit_1/edit_1.cu:82:29: warning: narrowing conversion from 'int64_t' (aka 'long') to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
82 | const int in_features = x.size(1);
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250208_optimize_b5_s4_e1_sweep/level_2/task_12/b5_s0_gemm_unrolled/edit_1/edit_1.cu:83:30: warning: narrowing conversion from 'int64_t' (aka 'long') to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
83 | const int out_features = weight.size(0);
| ^