← Back to Leaderboard

The AI CUDA Engineer 👷

12_Gemm_Multiply_LeakyReLU12_gemm_tiled_coalesced_edit_1

Level 2 • Task 12
import torch
import torch.nn as nn
import torch.nn.functional as F


def module_fn(
    x: torch.Tensor,
    multiplier: float,
    negative_slope: float,
    weight: torch.Tensor,
    bias: torch.Tensor,
) -> torch.Tensor:
    """
    Applies linear transformation, multiplies by scalar, and applies LeakyReLU.

    Args:
        x (torch.Tensor): Input tensor of shape (batch_size, in_features)
        multiplier (float): Scalar multiplier
        negative_slope (float): Negative slope for LeakyReLU
        weight (torch.Tensor): Weight matrix of shape (out_features, in_features)
        bias (torch.Tensor): Bias vector of shape (out_features)

    Returns:
        torch.Tensor: Output tensor of shape (batch_size, out_features)
    """
    x = F.linear(x, weight, bias)
    x = x * multiplier
    x = F.leaky_relu(x, negative_slope=negative_slope)
    return x


class Model(nn.Module):
    """
    Simple model that performs a Gemm, multiplies the result, and applies LeakyReLU.
    """

    def __init__(self, in_features, out_features, multiplier, negative_slope):
        super(Model, self).__init__()
        gemm = nn.Linear(in_features, out_features)
        self.weight = gemm.weight
        self.bias = gemm.bias

    def forward(self, x, fn=module_fn):
        return fn(x, multiplier, negative_slope, self.weight, self.bias)


batch_size = 128
in_features = 1024
out_features = 512
multiplier = 2.0
negative_slope = 0.1


def get_inputs():
    return [torch.randn(batch_size, in_features)]


def get_init_inputs():
    return [in_features, out_features, multiplier, negative_slope]
import torch
import torch.nn as nn

class Model(nn.Module):
    """
    Simple model that performs a Gemm, multiplies the result, and applies LeakyReLU.
    """
    def __init__(self, in_features, out_features, multiplier, negative_slope):
        super(Model, self).__init__()
        self.gemm = nn.Linear(in_features, out_features)
        self.multiplier = multiplier
        self.leaky_relu = nn.LeakyReLU(negative_slope)

    def forward(self, x):
        x = self.gemm(x)
        x = x * self.multiplier
        x = self.leaky_relu(x)
        return x

batch_size = 128
in_features = 1024
out_features = 512
multiplier = 2.0
negative_slope = 0.1

def get_inputs():
    return [torch.randn(batch_size, in_features)]

def get_init_inputs():
    return [in_features, out_features, multiplier, negative_slope]

Kernel Information

Related Kernels (Level 2, Task 12 • 12_Gemm_Multiply_LeakyReLU)

Rank Kernel Name Runtime (ms) Speedup Native Speedup Compile
🥇 12_gemm_warp_primitives_base 0.03 1.30 2.32
🥈 12_gemm_ldg_optimization_base 0.04 1.18 2.12
🥈 12_gemm_warp_vec4_edit_1_base_edit_1 0.04 1.18 2.12
🥈 12_gemm_ldg_optimization_edit_1 0.04 1.18 2.12
5 12_gemm_warp_vec4_edit_1_base_base 0.04 1.04 1.86
6 gemm_tiled_grid_edit_1 0.05 0.83 1.49
7 12_gemm_constant_memory_edit_1 0.05 0.80 1.43
8 gemm_unrolled_base 0.05 0.77 1.38
8 gemm_unrolled_edit_1 0.05 0.77 1.38
8 12_gemm_constant_memory_base 0.05 0.77 1.38
11 gemm_tiled_grid_block_32_base 0.07 0.60 1.08
12 gemm_tiled_grid_base 0.07 0.59 1.06
12 gemm_tiled_shared_base 0.07 0.59 1.06
12 gemm_tiled_grid_block_32_edit_1 0.07 0.59 1.06
15 12_gemm_tiled_coalesced_edit_1 0.07 0.58 1.05
16 gemm_tiled_streamed_base 0.07 0.56 1.00
17 optimized_gemm_leakyrelu_base 0.07 0.55 0.99
17 atomic_optimization_gemm_edit_1 0.07 0.55 0.99
17 optimized_gemm_leakyrelu_edit_1 0.07 0.55 0.99
20 optimized_thread_block_indexing_gemm_base 0.08 0.51 0.91
#include <torch/extension.h>
#include <cuda.h>
#include <cuda_runtime.h>

#define TILE 16

__global__ void module_fn_kernel(
    const float* __restrict__ x,       // [batch_size, in_features]
    const float* __restrict__ weight,  // [out_features, in_features]
    const float* __restrict__ bias,    // [out_features]
    float* __restrict__ output,        // [batch_size, out_features]
    const int batch_size,
    const int in_features,
    const int out_features,
    const float multiplier,
    const float negative_slope
) {
    // Compute global row and col indices for output
    int row = blockIdx.y * TILE + threadIdx.y;  // batch index
    int col = blockIdx.x * TILE + threadIdx.x;  // out_feature index

    float acc = 0.0f;

    // Loop over tiles of in_features dimension
    int numTiles = (in_features + TILE - 1) / TILE;

    // Declare shared memory tiles
    __shared__ float s_x[TILE][TILE];
    // For weight, we load transposed to ensure that later multiplication accesses are coalesced
    __shared__ float s_weight[TILE][TILE];

    for (int t = 0; t < numTiles; t++) {
        // Global index for x tile load
        int x_col = t * TILE + threadIdx.x;
        if (row < batch_size && x_col < in_features) {
            // x is stored row-major
            s_x[threadIdx.y][threadIdx.x] = x[row * in_features + x_col];
        } else {
            s_x[threadIdx.y][threadIdx.x] = 0.0f;
        }

        // Global index for weight tile load (we load weight transposed)
        int w_index = t * TILE + threadIdx.y; // this is the k index
        if (col < out_features && w_index < in_features) {
            // weight is stored as [out_features, in_features] in row-major order,
            // so weight[col][w_index] is at index (col * in_features + w_index).
            // We load it transposed into shared memory: s_weight[threadIdx.x][threadIdx.y]
            s_weight[threadIdx.x][threadIdx.y] = weight[col * in_features + w_index];
        } else {
            s_weight[threadIdx.x][threadIdx.y] = 0.0f;
        }

        __syncthreads();

        // Multiply the two tiles together
        for (int k = 0; k < TILE; k++) {
            acc += s_x[threadIdx.y][k] * s_weight[threadIdx.x][k];
        }
        __syncthreads();
    }

    // Write the result back to global memory, applying bias, multiplier and LeakyReLU
    if (row < batch_size && col < out_features) {
        acc = (acc + bias[col]) * multiplier;
        output[row * out_features + col] = (acc > 0.0f) ? acc : acc * negative_slope;
    }
}

torch::Tensor module_fn_forward(
    torch::Tensor x,
    float multiplier,
    float negative_slope,
    torch::Tensor weight,
    torch::Tensor bias
) {
    TORCH_CHECK(x.device().is_cuda(), "x must be a CUDA tensor");
    TORCH_CHECK(weight.device().is_cuda(), "weight must be a CUDA tensor");
    TORCH_CHECK(bias.device().is_cuda(), "bias must be a CUDA tensor");

    const int batch_size = x.size(0);
    const int in_features = x.size(1);
    const int out_features = weight.size(0);

    TORCH_CHECK(weight.size(1) == in_features, "Weight in_features must match x in_features");
    TORCH_CHECK(bias.size(0) == out_features, "Bias size must match weight out_features");

    auto output = torch::zeros({batch_size, out_features}, x.options());

    dim3 block(TILE, TILE);
    dim3 grid(
        (out_features + TILE - 1) / TILE,
        (batch_size + TILE - 1) / TILE
    );

    module_fn_kernel<<<grid, block>>>(
        x.data_ptr<float>(),
        weight.data_ptr<float>(),
        bias.data_ptr<float>(),
        output.data_ptr<float>(),
        batch_size,
        in_features,
        out_features,
        multiplier,
        negative_slope
    );

    return output;
}

PYBIND11_MODULE(TORCH_EXTENSION_NAME, m) {
    m.def("forward", &module_fn_forward, "Module function forward CUDA with tiled memory coalescing");
}
Performance Metrics
Metric Value Unit Variance Samples
Executed Ipc Active 0.416 inst/cycle 0.000 5
Executed Ipc Elapsed 0.384 inst/cycle 0.000 5
Issue Slots Busy 10.414 % 0.001 5
Issued Ipc Active 0.420 inst/cycle 0.000 5
SM Busy 10.414 % 0.001 5
Memory Throughput 33034861881.752 byte/second 37804124352725408.000 5
Mem Busy 78.312 % 0.162 5
Max Bandwidth 22.946 % 0.015 5
L1/TEX Hit Rate 61.020 % 0.000 5
L2 Hit Rate 86.078 % 0.209 5
Mem Pipes Busy 9.474 % 0.003 5
Warp Cycles Per Issued Instruction 37.156 cycle 0.012 5
Warp Cycles Per Executed Instruction 37.226 cycle 0.012 5
Avg. Active Threads Per Warp 32.000 0.000 5
Avg. Not Predicated Off Threads Per Warp 31.960 0.000 5
Max Active Clusters 0.000 cluster 0.000 5
Max Cluster Size 8.000 block 0.000 5
Overall GPU Occupancy 0.000 % 0.000 5
Cluster Occupancy 0.000 % 0.000 5
Block Limit SM 32.000 block 0.000 5
Block Limit Registers 8.000 block 0.000 5
Block Limit Shared Mem 21.000 block 0.000 5
Block Limit Warps 8.000 block 0.000 5
Theoretical Active Warps per SM 64.000 warp 0.000 5
Theoretical Occupancy 100.000 % 0.000 5
Achieved Occupancy 24.178 % 0.001 5
Achieved Active Warps Per SM 15.476 warp 0.000 5
Analysis Rules
Rule Description
WRN HighPipeUtilization All compute pipelines are under-utilized. Either this kernel is very small or it doesn't issue enough warps per scheduler. Check the Launch Statistics and Scheduler Statistics sections for further details.
INF CPIStall Check the Warp Stall Sampling (All Cycles) table for the top stall locations in your source based on sampling data. The Kernel Profiling Guide (https://docs.nvidia.com/nsight-compute/ProfilingGuide/index.html#metrics-reference) provides more details on each stall reason.
WRN Occupancy This kernel's theoretical occupancy is not impacted by any block limit. The difference between calculated theoretical (100.0%) and measured achieved occupancy (24.2%) can be the result of warp scheduling overheads or workload imbalances during the kernel execution. Load imbalances can occur between warps within a block as well as across blocks of the same kernel. See the CUDA Best Practices Guide (https://docs.nvidia.com/cuda/cuda-c-best-practices-guide/index.html#occupancy) for more details on optimizing occupancy.
Operation / Metric Value Unit
aten::zeros
CPU Time 4116376.11 μs
Device Time 86389.99 μs
Self CPU Time 103416.91 μs
Self Device Time 0.00 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
aten::zero_
CPU Time 7102702.33 μs
Device Time 4824119.79 μs
Self CPU Time 218737.39 μs
Self Device Time 0.00 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
aten::fill_
CPU Time 6883970.23 μs
Device Time 4824119.79 μs
Self CPU Time 263306.82 μs
Self Device Time 4824119.79 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
cudaLaunchKernel
CPU Time 6853442.79 μs
Device Time 1678.97 μs
Self CPU Time 6853442.79 μs
Self Device Time 1678.97 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
module_fn_kernel(float const*, float const*, float const*, float*, int, int, int, float, float)
CPU Time 0.00 μs
Device Time 3955583.84 μs
Self CPU Time 0.00 μs
Self Device Time 3955583.84 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
cudaEventRecord
CPU Time 175475.84 μs
Device Time 208522.30 μs
Self CPU Time 175475.84 μs
Self Device Time 208522.30 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
void at::native::vectorized_elementwise_kernel<4, at::native::FillFunctor<int>, at::detail::Array<char*, 1> >(int, at::native::FillFunctor<int>, at::detail::Array<char*, 1>)
CPU Time 0.00 μs
Device Time 4738120.81 μs
Self CPU Time 0.00 μs
Self Device Time 4738120.81 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
cudaEventElapsedTime
CPU Time 210771.11 μs
Device Time 0.00 μs
Self CPU Time 210771.11 μs
Self Device Time 0.00 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
Status: Completed
45290 warnings generated when compiling for host.
Suppressed 45325 warnings (45278 in non-user code, 47 NOLINT).
Use -header-filter=.* to display errors from all non-system headers. Use -system-headers to display errors from system headers as well.
/home/robert_sakana_ai/llm_cuda/experiments/20250212_optimize_b5_s4_e1_v2/level_2/task_12/b4_s3_12_gemm_tiled_coalesced/edit_1/edit_1.cu:8:5 bugprone-easily-swappable-parameters
8 | const float* __restrict__ x, // [batch_size, in_features]
| ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
9 | const float* __restrict__ weight, // [out_features, in_features]
| ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
10 | const float* __restrict__ bias, // [out_features]
| ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250212_optimize_b5_s4_e1_v2/level_2/task_12/b4_s3_12_gemm_tiled_coalesced/edit_1/edit_1.cu:8:31: note: the first parameter in the range is 'x'
8 | const float* __restrict__ x, // [batch_size, in_features]
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250212_optimize_b5_s4_e1_v2/level_2/task_12/b4_s3_12_gemm_tiled_coalesced/edit_1/edit_1.cu:10:31: note: the last parameter in the range is 'bias'
10 | const float* __restrict__ bias, // [out_features]
| ^~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250212_optimize_b5_s4_e1_v2/level_2/task_12/b4_s3_12_gemm_tiled_coalesced/edit_1/edit_1.cu:14:5: warning: 2 adjacent parameters of 'module_fn_kernel' of convertible types are easily swapped by mistake [bugprone-easily-swappable-parameters]
14 | const int out_features,
| ^~~~~~~~~~~~~~~~~~~~~~~
15 | const float multiplier,
| ~~~~~~~~~~~~~~~~~~~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250212_optimize_b5_s4_e1_v2/level_2/task_12/b4_s3_12_gemm_tiled_coalesced/edit_1/edit_1.cu:14:15: note: the first parameter in the range is 'out_features'
14 | const int out_features,
| ^~~~~~~~~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250212_optimize_b5_s4_e1_v2/level_2/task_12/b4_s3_12_gemm_tiled_coalesced/edit_1/edit_1.cu:15:17: note: the last parameter in the range is 'multiplier'
15 | const float multiplier,
| ^~~~~~~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250212_optimize_b5_s4_e1_v2/level_2/task_12/b4_s3_12_gemm_tiled_coalesced/edit_1/edit_1.cu:15:5: note: 'const int' and 'const float' may be implicitly converted: 'const int' (as 'int') -> 'const float' (as 'float'), 'const float' (as 'float') -> 'const int' (as 'int')
15 | const float multiplier,
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250212_optimize_b5_s4_e1_v2/level_2/task_12/b4_s3_12_gemm_tiled_coalesced/edit_1/edit_1.cu:19:15: warning: narrowing conversion from 'unsigned int' to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
19 | int row = blockIdx.y * TILE + threadIdx.y; // batch index
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250212_optimize_b5_s4_e1_v2/level_2/task_12/b4_s3_12_gemm_tiled_coalesced/edit_1/edit_1.cu:20:15: warning: narrowing conversion from 'unsigned int' to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
20 | int col = blockIdx.x * TILE + threadIdx.x; // out_feature index
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250212_optimize_b5_s4_e1_v2/level_2/task_12/b4_s3_12_gemm_tiled_coalesced/edit_1/edit_1.cu:34:21: warning: narrowing conversion from 'unsigned int' to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
34 | int x_col = t * TILE + threadIdx.x;
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250212_optimize_b5_s4_e1_v2/level_2/task_12/b4_s3_12_gemm_tiled_coalesced/edit_1/edit_1.cu:43:23: warning: narrowing conversion from 'unsigned int' to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
43 | int w_index = t * TILE + threadIdx.y; // this is the k index
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250212_optimize_b5_s4_e1_v2/level_2/task_12/b4_s3_12_gemm_tiled_coalesced/edit_1/edit_1.cu:70:19: warning: the parameter 'x' is copied for each invocation but only used as a const reference; consider making it a const reference [performance-unnecessary-value-param]
70 | torch::Tensor x,
| ^
| const &
/home/robert_sakana_ai/llm_cuda/experiments/20250212_optimize_b5_s4_e1_v2/level_2/task_12/b4_s3_12_gemm_tiled_coalesced/edit_1/edit_1.cu:73:19: warning: the parameter 'weight' is copied for each invocation but only used as a const reference; consider making it a const reference [performance-unnecessary-value-param]
73 | torch::Tensor weight,
| ^
| const &
/home/robert_sakana_ai/llm_cuda/experiments/20250212_optimize_b5_s4_e1_v2/level_2/task_12/b4_s3_12_gemm_tiled_coalesced/edit_1/edit_1.cu:74:19: warning: the parameter 'bias' is copied for each invocation but only used as a const reference; consider making it a const reference [performance-unnecessary-value-param]
74 | torch::Tensor bias
| ^
| const &
/home/robert_sakana_ai/llm_cuda/experiments/20250212_optimize_b5_s4_e1_v2/level_2/task_12/b4_s3_12_gemm_tiled_coalesced/edit_1/edit_1.cu:80:28: warning: narrowing conversion from 'int64_t' (aka 'long') to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
80 | const int batch_size = x.size(0);
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250212_optimize_b5_s4_e1_v2/level_2/task_12/b4_s3_12_gemm_tiled_coalesced/edit_1/edit_1.cu:81:29: warning: narrowing conversion from 'int64_t' (aka 'long') to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
81 | const int in_features = x.size(1);
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250212_optimize_b5_s4_e1_v2/level_2/task_12/b4_s3_12_gemm_tiled_coalesced/edit_1/edit_1.cu:82:30: warning: narrowing conversion from 'int64_t' (aka 'long') to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
82 | const int out_features = weight.size(0);
| ^