← Back to Leaderboard

The AI CUDA Engineer 👷

55_Matmul_MaxPool_Sum_Scalewarp_reduction_opt_kernel_base_base

Level 2 • Task 55
import torch
import torch.nn as nn
import torch.nn.functional as F


def module_fn(
    x: torch.Tensor,
    kernel_size: int,
    scale_factor: float,
    weight: torch.Tensor,
    bias: torch.Tensor,
) -> torch.Tensor:
    """
    Performs matrix multiplication, max pooling, sum, and scaling.

    Args:
        x (torch.Tensor): Input tensor of shape (batch_size, in_features)
        kernel_size (int): Size of max pooling kernel
        scale_factor (float): Factor to scale the output by
        weight (torch.Tensor): Weight matrix of shape (out_features, in_features)
        bias (torch.Tensor): Bias vector of shape (out_features)

    Returns:
        torch.Tensor: Output tensor of shape (batch_size,)
    """
    x = F.linear(x, weight, bias)
    x = F.max_pool1d(x.unsqueeze(1), kernel_size).squeeze(1)
    x = torch.sum(x, dim=1)
    x = x * scale_factor
    return x


class Model(nn.Module):
    """
    Model that performs matrix multiplication, max pooling, sum, and scaling.
    """

    def __init__(self, in_features, out_features, kernel_size, scale_factor):
        super(Model, self).__init__()
        gemm = nn.Linear(in_features, out_features)
        self.weight = nn.Parameter(gemm.weight)
        self.bias = nn.Parameter(gemm.bias)

    def forward(self, x, kernel_size, scale_factor, fn=module_fn):
        return fn(x, kernel_size, scale_factor, self.weight, self.bias)


batch_size = 128
in_features = 10
out_features = 5
kernel_size = 2
scale_factor = 0.5


def get_inputs():
    return [torch.randn(batch_size, in_features), kernel_size, scale_factor]


def get_init_inputs():
    return [in_features, out_features, kernel_size, scale_factor]
import torch
import torch.nn as nn

class Model(nn.Module):
    """
    Model that performs matrix multiplication, max pooling, sum, and scaling.
    """
    def __init__(self, in_features, out_features, kernel_size, scale_factor):
        super(Model, self).__init__()
        self.matmul = nn.Linear(in_features, out_features)
        self.max_pool = nn.MaxPool1d(kernel_size)
        self.scale_factor = scale_factor

    def forward(self, x):
        """
        Args:
            x (torch.Tensor): Input tensor of shape (batch_size, in_features).

        Returns:
            torch.Tensor: Output tensor of shape (batch_size, out_features).
        """
        x = self.matmul(x)
        x = self.max_pool(x.unsqueeze(1)).squeeze(1)
        x = torch.sum(x, dim=1)
        x = x * self.scale_factor
        return x

batch_size = 128
in_features = 10
out_features = 5
kernel_size = 2
scale_factor = 0.5

def get_inputs():
    return [torch.randn(batch_size, in_features)]

def get_init_inputs():
    return [in_features, out_features, kernel_size, scale_factor]

Kernel Information

Related Kernels (Level 2, Task 55 • 55_Matmul_MaxPool_Sum_Scale)

Rank Kernel Name Runtime (ms) Speedup Native Speedup Compile
🥇 optimized_shared_warp_base 0.01 3.73 2.23
🥇 smem_accel_base 0.01 3.73 2.23
🥇 indexing_optimized_kernel_base 0.01 3.73 2.23
🥇 warp_divergence_min_optimized_base 0.01 3.73 2.23
🥇 divergence_free_warp_base_base 0.01 3.73 2.23
🥇 optimized_divergence_free_kernel_base 0.01 3.73 2.23
🥇 min_warp_div_kernel_base 0.01 3.73 2.23
🥇 optimized_reduction_shfl_base 0.01 3.73 2.23
🥇 blocksize_tuning_opt_base 0.01 3.73 2.23
🥇 optimized_warp_shared_kernel_base 0.01 3.73 2.23
🥇 fused_divergence_base 0.01 3.73 2.23
🥇 optimized_hybrid_matmul_pool_base 0.01 3.73 2.23
🥇 optimized_hybrid_kernel_base 0.01 3.73 2.23
🥇 evenly_distributed_kernel_base 0.01 3.73 2.23
🥇 warp_reduction_opt_kernel_base_base 0.01 3.73 2.23
🥇 unrolled_matmul_pool_base_base 0.01 3.73 2.23
🥇 hybrid_min_sync_kernel_base 0.01 3.73 2.23
🥇 uniform_no_div_kernel_base 0.01 3.73 2.23
🥇 shared_warp_optimized_base 0.01 3.73 2.23
🥇 optimized_divergence_free_kernel_base 0.01 3.73 2.23
#include <torch/extension.h>
#include <cuda.h>
#include <cuda_runtime.h>

__global__ void warp_reduction_opt_kernel(
    const float* __restrict__ x,
    const float* __restrict__ weight,
    const float* __restrict__ bias,
    float* __restrict__ output,
    int B,           // batch_size
    int inF,         // number of input features
    int outF,        // number of output features
    int kernel_size,
    float scale_factor
) {
    const unsigned int tid = threadIdx.x;
    const unsigned int bid = blockIdx.x;
    const unsigned int warp_size = 32;
    const unsigned int warp_id = tid / warp_size;
    const unsigned int lane_id = tid % warp_size;
    const unsigned int num_warps = blockDim.x / warp_size;

    // Shared memory layout optimized for bank conflicts
    extern __shared__ float smem[];
    float* warp_results = smem;                    // Size: num_warps
    float* temp_storage = &smem[num_warps];        // Size: outF

    // Register for accumulating partial results
    float local_sum = 0.0f;

    // Step 1: Compute linear transformation with vectorized memory access
    // Each warp handles a portion of the output features
    const int features_per_warp = (outF + num_warps - 1) / num_warps;
    const int warp_start = warp_id * features_per_warp;
    const int warp_end = min(warp_start + features_per_warp, outF);

    // Each thread in the warp processes multiple features
    for (int j = warp_start + lane_id; j < warp_end; j += warp_size) {
        float acc = bias[j];
        // Vectorized dot product
        #pragma unroll 4
        for (int i = 0; i < inF; i++) {
            acc = __fmaf_rn(x[bid * inF + i], weight[j * inF + i], acc);
        }
        temp_storage[j] = acc;
    }
    __syncthreads();

    // Step 2: Max pooling using warp-level operations
    const int pooled_len = (outF >= kernel_size) ? ((outF - kernel_size) / kernel_size + 1) : 0;
    
    // Each thread processes multiple pooling windows
    for (int seg = tid; seg < pooled_len; seg += blockDim.x) {
        const int start_idx = seg * kernel_size;
        float max_val = temp_storage[start_idx];
        
        #pragma unroll
        for (int k = 1; k < kernel_size && (start_idx + k) < outF; k++) {
            max_val = fmaxf(max_val, temp_storage[start_idx + k]);
        }
        local_sum += max_val;
    }

    // Step 3: Warp-level reduction using shuffle operations
    #pragma unroll
    for (int offset = warp_size/2; offset > 0; offset /= 2) {
        local_sum += __shfl_down_sync(0xffffffff, local_sum, offset);
    }

    // First thread in each warp writes its result
    if (lane_id == 0) {
        warp_results[warp_id] = local_sum;
    }
    __syncthreads();

    // Final reduction across warps using the first warp
    if (warp_id == 0) {
        local_sum = (lane_id < num_warps) ? warp_results[lane_id] : 0.0f;
        
        // Warp-level reduction for final result
        #pragma unroll
        for (int offset = warp_size/2; offset > 0; offset /= 2) {
            local_sum += __shfl_down_sync(0xffffffff, local_sum, offset);
        }

        if (lane_id == 0) {
            output[bid] = local_sum * scale_factor;
        }
    }
}

at::Tensor forward(
    at::Tensor x,
    int64_t kernel_size,
    double scale_factor,
    at::Tensor weight,
    at::Tensor bias
) {
    TORCH_CHECK(x.is_cuda(), "x must be a CUDA tensor");
    TORCH_CHECK(weight.is_cuda(), "weight must be a CUDA tensor");
    TORCH_CHECK(bias.is_cuda(), "bias must be a CUDA tensor");
    TORCH_CHECK(x.dim() == 2, "x must have shape (batch_size, in_features)");
    TORCH_CHECK(weight.dim() == 2, "weight must have shape (out_features, in_features)");
    TORCH_CHECK(bias.dim() == 1, "bias must have shape (out_features)");

    const auto B = x.size(0);
    const auto inF = x.size(1);
    const auto outF = weight.size(0);

    auto out = torch::empty({B}, x.options());

    // Configure kernel launch parameters
    const int threads_per_block = 256;
    const int warps_per_block = threads_per_block / 32;
    
    // Shared memory size: space for warp results and temporary storage
    const size_t smem_size = (warps_per_block + outF) * sizeof(float);

    warp_reduction_opt_kernel<<<B, threads_per_block, smem_size>>>(
        x.data_ptr<float>(),
        weight.data_ptr<float>(),
        bias.data_ptr<float>(),
        out.data_ptr<float>(),
        B,
        inF,
        outF,
        static_cast<int>(kernel_size),
        static_cast<float>(scale_factor)
    );

    return out;
}

PYBIND11_MODULE(TORCH_EXTENSION_NAME, m) {
    m.def("forward", &forward, "Warp-optimized CUDA forward implementation");
}
Performance Metrics
Metric Value Unit Variance Samples
Executed Ipc Active 0.376 inst/cycle 0.000 5
Executed Ipc Elapsed 0.178 inst/cycle 0.000 5
Issue Slots Busy 9.512 % 0.035 5
Issued Ipc Active 0.380 inst/cycle 0.000 5
SM Busy 9.512 % 0.035 5
Memory Throughput 2836982692.814 byte/second 3168213929551257.000 5
Mem Busy 7.162 % 0.021 5
Max Bandwidth 3.776 % 0.004 5
L1/TEX Hit Rate 89.620 % 0.000 5
L2 Hit Rate 102.814 % 0.261 5
Mem Pipes Busy 3.554 % 0.004 5
Warp Cycles Per Issued Instruction 19.812 cycle 0.520 5
Warp Cycles Per Executed Instruction 20.162 cycle 0.538 5
Avg. Active Threads Per Warp 18.440 0.000 5
Avg. Not Predicated Off Threads Per Warp 15.370 0.000 5
Max Active Clusters 0.000 cluster 0.000 5
Max Cluster Size 8.000 block 0.000 5
Overall GPU Occupancy 0.000 % 0.000 5
Cluster Occupancy 0.000 % 0.000 5
Block Limit SM 32.000 block 0.000 5
Block Limit Registers 8.000 block 0.000 5
Block Limit Shared Mem 28.000 block 0.000 5
Block Limit Warps 8.000 block 0.000 5
Theoretical Active Warps per SM 64.000 warp 0.000 5
Theoretical Occupancy 100.000 % 0.000 5
Achieved Occupancy 11.534 % 0.000 5
Achieved Active Warps Per SM 7.382 warp 0.000 5
Analysis Rules
Rule Description
WRN HighPipeUtilization All compute pipelines are under-utilized. Either this kernel is very small or it doesn't issue enough warps per scheduler. Check the Launch Statistics and Scheduler Statistics sections for further details.
INF CPIStall Check the Warp Stall Sampling (All Cycles) table for the top stall locations in your source based on sampling data. The Kernel Profiling Guide (https://docs.nvidia.com/nsight-compute/ProfilingGuide/index.html#metrics-reference) provides more details on each stall reason.
WRN ThreadDivergence Instructions are executed in warps, which are groups of 32 threads. Optimal instruction throughput is achieved if all 32 threads of a warp execute the same instruction. The chosen launch configuration, early thread completion, and divergent flow control can significantly lower the number of active threads in a warp per cycle. This kernel achieves an average of 18.4 threads being active per cycle. This is further reduced to 15.4 threads per warp due to predication. The compiler may use predication to avoid an actual branch. Instead, all instructions are scheduled, but a per-thread condition code or predicate controls which threads execute the instructions. Try to avoid different execution paths within a warp when possible. In addition, ensure your kernel makes use of Independent Thread Scheduling, which allows a warp to reconverge after a data-dependent conditional block by explicitly calling __syncwarp().
WRN Occupancy This kernel's theoretical occupancy is not impacted by any block limit. The difference between calculated theoretical (100.0%) and measured achieved occupancy (11.5%) can be the result of warp scheduling overheads or workload imbalances during the kernel execution. Load imbalances can occur between warps within a block as well as across blocks of the same kernel. See the CUDA Best Practices Guide (https://docs.nvidia.com/cuda/cuda-c-best-practices-guide/index.html#occupancy) for more details on optimizing occupancy.
Operation / Metric Value Unit
aten::to
CPU Time 322972.36 μs
Device Time 5.54 μs
Self CPU Time 42.35 μs
Self Device Time 0.00 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
aten::_to_copy
CPU Time 322930.02 μs
Device Time 5.54 μs
Self CPU Time 83.42 μs
Self Device Time 0.00 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
aten::empty_strided
CPU Time 322732.87 μs
Device Time 0.00 μs
Self CPU Time 87.22 μs
Self Device Time 0.00 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
cudaDeviceGetStreamPriorityRange
CPU Time 322459.98 μs
Device Time 0.00 μs
Self CPU Time 322459.98 μs
Self Device Time 0.00 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
cudaLaunchKernel
CPU Time 500347.27 μs
Device Time 21485.88 μs
Self CPU Time 500347.27 μs
Self Device Time 21485.88 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
warp_reduction_opt_kernel(float const*, float const*, float const*, float*, int, int, int, int, float)
CPU Time 0.00 μs
Device Time 33238.14 μs
Self CPU Time 0.00 μs
Self Device Time 33238.14 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
cudaEventRecord
CPU Time 21865.54 μs
Device Time 42562.45 μs
Self CPU Time 21865.54 μs
Self Device Time 42562.45 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
aten::zero_
CPU Time 65180.43 μs
Device Time 637085.35 μs
Self CPU Time 13250.35 μs
Self Device Time 0.00 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
aten::fill_
CPU Time 51930.88 μs
Device Time 637085.35 μs
Self CPU Time 16823.13 μs
Self Device Time 637085.35 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
void at::native::vectorized_elementwise_kernel<4, at::native::FillFunctor<int>, at::detail::Array<char*, 1> >(int, at::native::FillFunctor<int>, at::detail::Array<char*, 1>)
CPU Time 0.00 μs
Device Time 637085.35 μs
Self CPU Time 0.00 μs
Self Device Time 637085.35 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
Status: Completed
45292 warnings generated when compiling for host.
Suppressed 45325 warnings (45278 in non-user code, 47 NOLINT).
Use -header-filter=.* to display errors from all non-system headers. Use -system-headers to display errors from system headers as well.
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_2/task_55/b10_s3_warp_reduction_opt_kernel_base/base/base.cu:7:5 bugprone-easily-swappable-parameters
7 | const float* __restrict__ weight,
| ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
8 | const float* __restrict__ bias,
| ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_2/task_55/b10_s3_warp_reduction_opt_kernel_base/base/base.cu:7:31: note: the first parameter in the range is 'weight'
7 | const float* __restrict__ weight,
| ^~~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_2/task_55/b10_s3_warp_reduction_opt_kernel_base/base/base.cu:8:31: note: the last parameter in the range is 'bias'
8 | const float* __restrict__ bias,
| ^~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_2/task_55/b10_s3_warp_reduction_opt_kernel_base/base/base.cu:10:5: warning: 3 adjacent parameters of 'warp_reduction_opt_kernel' of similar type ('int') are easily swapped by mistake [bugprone-easily-swappable-parameters]
10 | int B, // batch_size
| ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
11 | int inF, // number of input features
| ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
12 | int outF, // number of output features
| ~~~~~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_2/task_55/b10_s3_warp_reduction_opt_kernel_base/base/base.cu:10:9: note: the first parameter in the range is 'B'
10 | int B, // batch_size
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_2/task_55/b10_s3_warp_reduction_opt_kernel_base/base/base.cu:12:9: note: the last parameter in the range is 'outF'
12 | int outF, // number of output features
| ^~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_2/task_55/b10_s3_warp_reduction_opt_kernel_base/base/base.cu:13:5: warning: 2 adjacent parameters of 'warp_reduction_opt_kernel' of convertible types are easily swapped by mistake [bugprone-easily-swappable-parameters]
13 | int kernel_size,
| ^~~~~~~~~~~~~~~~
14 | float scale_factor
| ~~~~~~~~~~~~~~~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_2/task_55/b10_s3_warp_reduction_opt_kernel_base/base/base.cu:13:9: note: the first parameter in the range is 'kernel_size'
13 | int kernel_size,
| ^~~~~~~~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_2/task_55/b10_s3_warp_reduction_opt_kernel_base/base/base.cu:14:11: note: the last parameter in the range is 'scale_factor'
14 | float scale_factor
| ^~~~~~~~~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_2/task_55/b10_s3_warp_reduction_opt_kernel_base/base/base.cu:14:5: note: 'int' and 'float' may be implicitly converted
14 | float scale_factor
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_2/task_55/b10_s3_warp_reduction_opt_kernel_base/base/base.cu:33:35: warning: narrowing conversion from 'unsigned int' to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
33 | const int features_per_warp = (outF + num_warps - 1) / num_warps;
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_2/task_55/b10_s3_warp_reduction_opt_kernel_base/base/base.cu:34:28: warning: narrowing conversion from 'unsigned int' to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
34 | const int warp_start = warp_id * features_per_warp;
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_2/task_55/b10_s3_warp_reduction_opt_kernel_base/base/base.cu:38:18: warning: narrowing conversion from 'unsigned int' to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
38 | for (int j = warp_start + lane_id; j < warp_end; j += warp_size) {
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_2/task_55/b10_s3_warp_reduction_opt_kernel_base/base/base.cu:53:20: warning: narrowing conversion from 'unsigned int' to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
53 | for (int seg = tid; seg < pooled_len; seg += blockDim.x) {
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_2/task_55/b10_s3_warp_reduction_opt_kernel_base/base/base.cu:53:50: warning: narrowing conversion from 'unsigned int' to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
53 | for (int seg = tid; seg < pooled_len; seg += blockDim.x) {
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_2/task_55/b10_s3_warp_reduction_opt_kernel_base/base/base.cu:93:16: warning: the parameter 'x' is copied for each invocation but only used as a const reference; consider making it a const reference [performance-unnecessary-value-param]
93 | at::Tensor x,
| ^
| const &
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_2/task_55/b10_s3_warp_reduction_opt_kernel_base/base/base.cu:96:16: warning: the parameter 'weight' is copied for each invocation but only used as a const reference; consider making it a const reference [performance-unnecessary-value-param]
96 | at::Tensor weight,
| ^
| const &
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_2/task_55/b10_s3_warp_reduction_opt_kernel_base/base/base.cu:97:16: warning: the parameter 'bias' is copied for each invocation but only used as a const reference; consider making it a const reference [performance-unnecessary-value-param]
97 | at::Tensor bias
| ^
| const &
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_2/task_55/b10_s3_warp_reduction_opt_kernel_base/base/base.cu:124:9: warning: narrowing conversion from 'int64_t' (aka 'long') to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
124 | B,
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_2/task_55/b10_s3_warp_reduction_opt_kernel_base/base/base.cu:125:9: warning: narrowing conversion from 'int64_t' (aka 'long') to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
125 | inF,
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_2/task_55/b10_s3_warp_reduction_opt_kernel_base/base/base.cu:126:9: warning: narrowing conversion from 'int64_t' (aka 'long') to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
126 | outF,
| ^